IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1554-d1337870.html
   My bibliography  Save this article

Estimating the Flood, Landslide, and Heavy Rainfall Susceptibility of Vaccine Transportation after 2021 Flooding in South Kalimantan Province, Indonesia

Author

Listed:
  • Fatma Lestari

    (Occupational Health and Safety Department, Faculty of Public Health, Universitas Indonesia, Depok 16424, Indonesia
    Disaster Risk Reduction Center, Universitas Indonesia, Depok 16424, Indonesia)

  • Mondastri Korib Sudaryo

    (Department of Epidemiology, Faculty of Public Health, Universitas Indonesia, Depok 16424, Indonesia)

  • Riyanti Djalante

    (Integrated Research on Disaster Risks (IRDR), Beijing 100094, China)

  • Andrio Adiwibowo

    (Disaster Risk Reduction Center, Universitas Indonesia, Depok 16424, Indonesia)

  • Abdul Kadir

    (Occupational Health and Safety Department, Faculty of Public Health, Universitas Indonesia, Depok 16424, Indonesia)

  • Zakianis

    (Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, Depok 16424, Indonesia)

  • Saraswati Andani Satyawardhani

    (Disaster Risk Reduction Center, Universitas Indonesia, Depok 16424, Indonesia)

Abstract

Vaccine accessibility and availability has been shown to be one of the key factors to ensure rapid responses to the COVID-19 pandemic. Increased vaccine coverage is, however, dependent on vaccine supply and transportation, in particular ensuring that road networks have as minimal disruption as possible. In Indonesia, the most common and imminent threats affecting transport flows are due to frequent disasters such as floods, landslides, and high rainfall. This research is novel because it fills in the gap between health and disaster studies in COVID-19-related studies published since 2021. This study presents an analysis of susceptibility of various hydro-meteorological disasters on the trans-provincial roads that span over 856.014 km and cover an area of 38,744.23 km 2 over 13 districts in South Kalimantan Province, Indonesia. The floods that occurred in January and November 2021 inundated an area of around 4000 km 2 (10 percent of the total study area) that spans along 13 sub-provincial/district areas. Data collected are analyzed using the geographical information system (GIS) to quantify and classify the impacts in the 13 districts, utilizing different indicators such as topography, road conditions and characteristics, amount of rainfall, and types of disasters that occurred (floods and landslides). The results show that the trans-provincial road, which is also the only road available for transporting vaccines in the South Kalimantan Province, was highly susceptible to various hydro-meteorological disasters. Around 20 percent of the total road length was disrupted by the floods, close to 4% of the road section passes through mountainous areas that make it susceptible to landslides, and about 13% to 23% of the road section is vulnerable to slip risks due to the extreme rainfall. The results presented here demand an overarching solution involving multiple stakeholders from public works and local disaster management offices in terms of disaster mitigation and preparedness strategies, and environmental protection in terms of disaster risk reduction implementation. This research contributes to the health sector particularly through future preparedness to pandemics and wider vaccine distribution and coverage through the identification and mapping of sections of roads impacted by multiple disasters.

Suggested Citation

  • Fatma Lestari & Mondastri Korib Sudaryo & Riyanti Djalante & Andrio Adiwibowo & Abdul Kadir & Zakianis & Saraswati Andani Satyawardhani, 2024. "Estimating the Flood, Landslide, and Heavy Rainfall Susceptibility of Vaccine Transportation after 2021 Flooding in South Kalimantan Province, Indonesia," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1554-:d:1337870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Derrick Hambly & Jean Andrey & Brian Mills & Chris Fletcher, 2013. "Projected implications of climate change for road safety in Greater Vancouver, Canada," Climatic Change, Springer, vol. 116(3), pages 613-629, February.
    2. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    2. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    3. Islam, Mazharul & Alharthi, Majed & Alam, Md. Mahmudul, 2018. "The Impacts of Climate Change on Road Traffic Accidents in Saudi Arabia," OSF Preprints 2p5aj, Center for Open Science.
    4. Angus Eugene Retallack & Bertram Ostendorf, 2020. "Relationship Between Traffic Volume and Accident Frequency at Intersections," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    5. He, Xin & Xu, Xinwei & Shen, Yu, 2023. "How climate change affects enterprise inventory management —— From the perspective of regional traffic," Journal of Business Research, Elsevier, vol. 162(C).
    6. Paul Chinowsky & Amy Schweikert & Niko Strzepek & Ken Strzepek, 2015. "Infrastructure and climate change: a study of impacts and adaptations in Malawi, Mozambique, and Zambia," Climatic Change, Springer, vol. 130(1), pages 49-62, May.
    7. Marcelo Sthel & José Glauco Tostes & Juliana Tavares, 2013. "Sustainable Complex Triangular Cells for the Evaluation of CO 2 Emissions by Individuals instead of Nations in a Scenario for 2030," Sustainability, MDPI, vol. 5(5), pages 1-16, May.
    8. Schweikert, Amy & Chinowsky, Paul & Kwiatkowski, Kyle & Espinet, Xavier, 2014. "The infrastructure planning support system: Analyzing the impact of climate change on road infrastructure and development," Transport Policy, Elsevier, vol. 35(C), pages 146-153.
    9. Jiakai Lu & Chao Ren & Weiting Yue & Ying Zhou & Xiaoqin Xue & Yuanyuan Liu & Cong Ding, 2023. "Investigation of Landslide Susceptibility Decision Mechanisms in Different Ensemble-Based Machine Learning Models with Various Types of Factor Data," Sustainability, MDPI, vol. 15(18), pages 1-49, September.
    10. Sullivan, James L. & Dowds, Jonathan & Novak, David C. & Scott, Darren M. & Ragsdale, Cliff, 2019. "Development and application of an iterative heuristic for roadway snow and ice control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 18-31.
    11. Sharaf AlKheder & Abdullah AlOmair, 2022. "Urban traffic prediction using metrological data with fuzzy logic, long short-term memory (LSTM), and decision trees (DTs)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1685-1719, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1554-:d:1337870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.