IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1300-d1332703.html
   My bibliography  Save this article

Analysis of a Multiple Traffic Flow Network’s Spatial Organization Pattern Recognition Based on a Network Map

Author

Listed:
  • Juanzhu Liang

    (The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350002, China)

  • Shunyi Xie

    (The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350002, China)

  • Jinjian Bao

    (The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350002, China)

Abstract

Detecting the spatial organization patterns of urban networks with multiple traffic flows from the perspective of complex networks and traffic behavior will help to optimize the urban spatial structure and thereby promote the sustainable development of the city. However, there are notable differences in regional spatial patterns among the different modes of transportation. Based on the road, railway, and air frequency data, this article investigates the spatial distribution and accessibility patterns of multiple transportation flows in the Yangtze River Economic Belt. Next, we use the TCD (Transportation Cluster Detection) community discovery algorithm and integrate it with the Baidu Maps API to obtain real-time time cost data to construct a community detection model of a multiple traffic flow network. We integrate the geographical network and topological network to perform feature extraction and rule mining on the spatial organization model of the urban network in the Yangtze River Economic Belt. The results show that: (1) The multiple traffic flow network of the Yangtze River Economic Belt has significant spatial differentiation. The spatial differentiation of aviation and railway networks is mainly concentrated between regions and within provinces, while the imbalance of highway networks is manifested as an imbalance within regions and between provinces. (2) The accessibility pattern of the highway network in the Yangtze River Economic Belt presents a “core–edge” spatial pattern. The accessibility pattern of the railway network generally presents a spatial pattern of “strong in the east and weak in the west”. Compared with sparse road and railway networks, the accessibility pattern of the aviation network shows a spatial pattern of “time and space compression in western cities”. (3) A total of 24 communities were identified through the TCD algorithm, mainly encompassing six major “urban economic communities” located in Guizhou, Yunnan, Anhui, Sichuan–Chongqing, Hubei–Hunan–Jiangxi, and Jiangsu–Zhejiang–Shanghai. (4) The urban network space organization model of the Yangtze River Economic Belt can be roughly divided into three models: the “single-core” model, with Guizhou, Kunming, and Hefei as the core, the “dual-core” model, constructed by Chengdu–Chongqing, and the “multi-core” model, constructed by Changsha–Wuhan–Nanchang and Shanghai–Nanjing–Hangzhou. This model of urban network spatial organization holds indicative significance in revealing the spatial correlation pattern among prefecture-level city units.

Suggested Citation

  • Juanzhu Liang & Shunyi Xie & Jinjian Bao, 2024. "Analysis of a Multiple Traffic Flow Network’s Spatial Organization Pattern Recognition Based on a Network Map," Sustainability, MDPI, vol. 16(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1300-:d:1332703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    2. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    3. Xingxing Jin & Guojian Hu & Hailong Ding & Shilin Ye & Yuqi Lu & Jinhuang Lin, 2020. "Evolution of spatial structure patterns of city networks in the Yangtze River Economic Belt from the perspective of corporate pledge linkage," Growth and Change, Wiley Blackwell, vol. 51(2), pages 833-851, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    2. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    3. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    4. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    5. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    6. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    7. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    9. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    10. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    11. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    13. T. Gomes & J. Craveirinha & L. Jorge, 2010. "An effective algorithm for obtaining the whole set of minimal cost pairs of disjoint paths with dual arc costs," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 394-414, April.
    14. Zhou, Bo & Eskandarian, Azim, 2006. "A Non-Deterministic Path Generation Algorithm for Traffic Networks," 47th Annual Transportation Research Forum, New York, New York, March 23-25, 2006 208047, Transportation Research Forum.
    15. Sha Xiao & Bindong Sun, 2023. "How Has the Inter-City Corporate Network Spatio-Temporally Evolved in China? Evidence from Chinese Investment in Newly Established Enterprises from 1980–2017," Land, MDPI, vol. 12(1), pages 1-17, January.
    16. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    17. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    18. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    19. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    20. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1300-:d:1332703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.