IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v178y2023ics1366554523002703.html
   My bibliography  Save this article

Inter-terminal transportation for an offshore port integrating an inland container depot

Author

Listed:
  • Cao, Pengliang
  • Zheng, Yujing
  • Yuen, Kum Fai
  • Ji, Yuxiong

Abstract

Offshore ports, which are located on islands or away from the hinterland, are usually connected with the hinterland via bridges for truck transportation. With the rapid growth of port throughput, the bridges are likely to become a bottleneck restricting the development of port business. Inland container depots (ICD) have been introduced as satellite terminals to address congestion issues on bridges by allowing a proportion of drayage trucks to pick up and drop off containers at the ICD instead of going to the container terminals of the offshore ports. Containers are transported between the ICD and container terminals by inter-terminal transportation (ITT) trucks owned by port authorities. The ICD is expected to mitigate the bridge congestion by transferring the travel demands of drayage trucks in peak hours to the travel demands of ITT trucks in off-peak hours. We propose a methodology for analyzing the influence of ICDs on port efficiency. An integer linear programming model is developed to optimize the movements of containers, drayage trucks and ITT trucks in an offshore port area with the objective of minimizing the costs of drayage trucks and ITT trucks and the penalty for late delivery of containers. Two model transformation approaches are proposed to reduce the solution space of the model for improving the computational efficiency of the algorithm. The influence of ICDs on port efficiency is evaluated through a real-world case study using the proposed methodology. The results provide insights for port authorities to make strategic decisions.

Suggested Citation

  • Cao, Pengliang & Zheng, Yujing & Yuen, Kum Fai & Ji, Yuxiong, 2023. "Inter-terminal transportation for an offshore port integrating an inland container depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transe:v:178:y:2023:i:c:s1366554523002703
    DOI: 10.1016/j.tre.2023.103282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    2. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    2. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    3. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    4. Qin, Hu & Moriakin, Anton & Xu, Gangyan & Li, Jiliu, 2024. "The generator distribution problem for base stations during emergency power outage: A branch-and-price-and-cut approach," European Journal of Operational Research, Elsevier, vol. 318(3), pages 752-767.
    5. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Egan, Malcolm & Jakob, Michal, 2016. "Market mechanism design for profitable on-demand transport services," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 178-195.
    7. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    8. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    9. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    10. MELIS, Lissa & SÖRENSEN, Kenneth, 2021. "The real-time on-demand bus routing problem: What is the cost of dynamic requests?," Working Papers 2021003, University of Antwerp, Faculty of Business and Economics.
    11. Ulrike Ritzinger & Jakob Puchinger & Richard Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    12. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    13. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    14. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    15. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Reinhardt, Line Blander & Clausen, Tommy & Pisinger, David, 2013. "Synchronized dial-a-ride transportation of disabled passengers at airports," European Journal of Operational Research, Elsevier, vol. 225(1), pages 106-117.
    17. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    18. Nicole Ronald & Russell Thompson & Stephan Winter, 2015. "Simulating Demand-responsive Transportation: A Review of Agent-based Approaches," Transport Reviews, Taylor & Francis Journals, vol. 35(4), pages 404-421, July.
    19. Paul Czioska & Ronny Kutadinata & Aleksandar Trifunović & Stephan Winter & Monika Sester & Bernhard Friedrich, 2019. "Real-world meeting points for shared demand-responsive transportation systems," Public Transport, Springer, vol. 11(2), pages 341-377, August.
    20. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:178:y:2023:i:c:s1366554523002703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.