IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1180-d1329963.html
   My bibliography  Save this article

Assessing Tornado Impacts in the State of Kentucky with a Focus on Demographics and Roadways Using a GIS-Based Approach

Author

Listed:
  • Mehmet Burak Kaya

    (Department of Civil and Environmental Engineering, FAMU–FSU College of Engineering, Tallahassee, FL 32310, USA)

  • Onur Alisan

    (Department of Civil and Environmental Engineering, FAMU–FSU College of Engineering, Tallahassee, FL 32310, USA)

  • Alican Karaer

    (Iteris, Inc., Tallahassee, FL 32304, USA)

  • Eren Erman Ozguven

    (Department of Civil and Environmental Engineering, FAMU–FSU College of Engineering, Tallahassee, FL 32310, USA)

Abstract

Although the literature provides valuable insight into tornado vulnerability and resilience, there are still research gaps in assessing tornadoes’ impact on communities and transportation infrastructure, especially in the wake of the rapidly changing frequency and strength of tornadoes due to climate change. In this study, we first investigated the relationship between tornado exposure and demographic-, socioeconomic-, and transportation-related factors in our study area, the state of Kentucky. Tornado exposures for each U.S. census block group (CBG) were calculated by utilizing spatial analysis methods such as kernel density estimation and zonal statistics. Tornadoes between 1950 and 2022 were utilized to calculate tornado density values as a surrogate variable for tornado exposure. Since tornado density varies over space, a multiscale geographically weighted regression model was employed to consider spatial heterogeneity over the study region rather than using global regression such as ordinary least squares (OLS). The findings indicated that tornado density varied over the study area. The southwest portion of Kentucky and Jefferson County, which has low residential density, showed high levels of tornado exposure. In addition, relationships between the selected factors and tornado exposure also changed over space. For example, transportation costs as a percentage of income for the regional typical household was found to be strongly associated with tornado exposure in southwest Kentucky, whereas areas close to Jefferson County indicated an opposite association. The second part of this study involves the quantification of the tornado impact on roadways by using two different methods, and results were mapped. Although in both methods the same regions were found to be impacted, the second method highlighted the central CBGs rather than the peripheries. Information gathered by such an investigation can assist authorities in identifying vulnerable regions from both transportation network and community perspectives. From tornado debris handling to community preparedness, this type of work has the potential to inform sustainability-focused plans and policies in the state of Kentucky.

Suggested Citation

  • Mehmet Burak Kaya & Onur Alisan & Alican Karaer & Eren Erman Ozguven, 2024. "Assessing Tornado Impacts in the State of Kentucky with a Focus on Demographics and Roadways Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(3), pages 1-27, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1180-:d:1329963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    2. Mehmet Baran Ulak & Ayberk Kocatepe & Lalitha Madhavi Konila Sriram & Eren Erman Ozguven & Reza Arghandeh, 2018. "Assessment of the hurricane-induced power outages from a demographic, socioeconomic, and transportation perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1489-1508, July.
    3. Chia-Hsien Lin & Tzai-Hung Wen, 2011. "Using Geographically Weighted Regression (GWR) to Explore Spatial Varying Relationships of Immature Mosquitoes and Human Densities with the Incidence of Dengue," IJERPH, MDPI, vol. 8(7), pages 1-18, July.
    4. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    5. Stephen M. Strader & Walker S. Ashley & Thomas J. Pingel & Andrew J. Krmenec, 2017. "Projected 21st century changes in tornado exposure, risk, and disaster potential," Climatic Change, Springer, vol. 141(2), pages 301-313, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    2. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    3. Giron Cima, Elizabeth & Freire da Rocha-Junior, Weimar & Angel Uribe-Opazo, Miguel & Henrique Dalposso, Gustavo, 2023. "An Analysis of the Gross Domestic Product of Municipalities: a Spatial Glance into the State of Paraná-Brazil," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.
    4. Yujiao Chen & Zhengbo Luo, 2022. "Hedonic Pricing of Houses in Megacities Pre- and Post-COVID-19: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    5. Zhou Huang & Ganmin Yin & Xia Peng & Xiao Zhou & Quanhua Dong, 2023. "Quantifying the environmental characteristics influencing the attractiveness of commercial agglomerations with big geo-data," Environment and Planning B, , vol. 50(9), pages 2470-2490, November.
    6. Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
    7. Cynthia Sin Tian Ho & Mats Wilhelmsson, 2022. "Geographical accessibility to bank branches and its relationship to new firm formation in Sweden via multiscale geographically weighted regression," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 42(2), pages 191-218, August.
    8. Mühlematter, Dominik J. & Wiedemann, Nina & Xin, Yanan & Raubal, Martin, 2024. "Spatially-aware station based car-sharing demand prediction," Journal of Transport Geography, Elsevier, vol. 114(C).
    9. Cui, Wencong & Li, Jianyi & Xu, Wangtu & Güneralp, Burak, 2021. "Industrial electricity consumption and economic growth: A spatio-temporal analysis across prefecture-level cities in China from 1999 to 2014," Energy, Elsevier, vol. 222(C).
    10. Guanwei Zhao & Zhitao Li & Yuzhen Shang & Muzhuang Yang, 2022. "How Does the Urban Built Environment Affect Online Car-Hailing Ridership Intensity among Different Scales?," IJERPH, MDPI, vol. 19(9), pages 1-25, April.
    11. Chih-Hao Wang & Na Chen, 2021. "A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths," Transportation, Springer, vol. 48(4), pages 1967-1986, August.
    12. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    13. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    14. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    15. Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
    16. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    17. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    18. Daniel Acheampong & Tanya Benford, 2020. "Alternative Treatment Of Contribution In Aid Of Construction: The Impact On Investor-Owned Utility Plant Asset Replacement," Accounting & Taxation, The Institute for Business and Finance Research, vol. 12(1), pages 81-96.
    19. Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
    20. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1180-:d:1329963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.