IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p888-d1322916.html
   My bibliography  Save this article

Influence of Snowy and Icy Weather on Vehicle Sideslip and Rollover: A Simulation Approach

Author

Listed:
  • Qingzhou Wang

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Yaxuan Zhao

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Lujia Li

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Liying Kong

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Wenjing Si

    (School of Architectural Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China)

Abstract

Many northern hemisphere countries have experienced exceptionally heavy snow, blizzards, and cold snaps in recent years, causing considerable public concern about the high crash rate and safety issues in road traffic. This study used the CarSim dynamics simulation to recreate several vehicle driving scenarios in snow and ice conditions. To explore the influence of speed, curve radius, and road adhesion coefficient on vehicle sideslip and rollover, four lateral stability evaluation indicators, namely lateral offset, lateral acceleration, yaw rate, and roll angle, are chosen. Unfavorable combinations of these factors result in vehicle deviation from their intended trajectory and dramatically increase the likelihood of sideslip and rollover incidents. In particular, road adhesion coefficients ranging from 0.10 to 0.20 lead first to sideslip, while coefficients of 0.21 to 0.35 lead straight to rollover. Additionally, in the initial segment of the curve, cars are more susceptible to lateral instability. Curve radius has the greatest influence on sideslip when the three influencing factors are combined, while speed is the key component affecting rollover incidents. Smaller curve radii and higher speeds are major factors in such incidents. The results are helpful for proper road alignment parameter selection and dynamic speed-limit measures. This can provide a theoretical basis for traffic management departments to take targeted measures, which is of great significance to improving road traffic safety in snowy and icy weather.

Suggested Citation

  • Qingzhou Wang & Yaxuan Zhao & Lujia Li & Liying Kong & Wenjing Si, 2024. "Influence of Snowy and Icy Weather on Vehicle Sideslip and Rollover: A Simulation Approach," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:888-:d:1322916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanna Yin & Huiying Wen & Lu Sun & Wei Hou, 2020. "The Influence of Road Geometry on Vehicle Rollover and Skidding," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    2. Amir Saman Abdollahzadeh Nasiri & Omid Rahmani & Ali Abdi Kordani & Nader Karballaeezadeh & Amir Mosavi, 2020. "Evaluation of Safety in Horizontal Curves of Roads Using a Multi-Body Dynamic Simulation Process," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    3. Lin Tian & Yanfei Li & Jueshuai Li & Wenzhen Lv, 2021. "A simulation based large bus side slip and rollover threshold study in slope-curve section under adverse weathers," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    4. Black, Alan W. & Mote, Thomas L., 2015. "Effects of winter precipitation on automobile collisions, injuries, and fatalities in the United States," Journal of Transport Geography, Elsevier, vol. 48(C), pages 165-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ester Olmeda & Enrique Roberto Carrillo Li & Jorge Rodríguez Hernández & Vicente Díaz, 2022. "Lateral Dynamic Simulation of a Bus under Variable Conditions of Camber and Curvature Radius," Mathematics, MDPI, vol. 10(17), pages 1-25, August.
    2. Jinliang Xu & Wenzhen Lv & Chao Gao & Yufeng Bi & Minghao Mu & Guangxun E, 2022. "Why Do Drivers’ Collision Avoidance Maneuvers Tend to Cause SUVs to Sideslip or Rollover on Horizontal Curve and Grade Combinations?—An Analysis of the Causes Based on a Modified Multibody Dynamics Mo," IJERPH, MDPI, vol. 19(23), pages 1-21, November.
    3. Amir Saman Abdollahzadeh Nasiri & Omid Rahmani & Ali Abdi Kordani & Nader Karballaeezadeh & Amir Mosavi, 2020. "Evaluation of Safety in Horizontal Curves of Roads Using a Multi-Body Dynamic Simulation Process," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    4. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    5. Daniel Burow & Christopher Atkinson, 2019. "An examination of traffic volume during snow events in northeast Ohio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1179-1189, November.
    6. Jinliang Xu & Miao Jia & Chao Gao & Wenzhen Lv, 2023. "Limited Response of Curve Safety Level to Friction Factor and Superelevation Variation under Repeated Traffic Loads," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    7. Jonathan Davis & Diane S. Rohlman, 2021. "Winter Weather-Related Crashes during the Commute to Work: An Opportunity for Total Worker Health ®," IJERPH, MDPI, vol. 18(19), pages 1-10, September.
    8. Brad Hartman & Harvey Cutler & Martin Shields & Dave Turner, 2021. "The economic effects of improved precipitation forecasts in the United States due to better commuting decisions," Growth and Change, Wiley Blackwell, vol. 52(4), pages 2149-2171, December.
    9. Brazil, William & White, Arthur & Nogal, Maria & Caulfield, Brian & O'Connor, Alan & Morton, Craig, 2017. "Weather and rail delays: Analysis of metropolitan rail in Dublin," Journal of Transport Geography, Elsevier, vol. 59(C), pages 69-76.
    10. Jinliang Xu & Tian Xin & Chao Gao & Zhenhua Sun, 2022. "Study on the Maximum Safe Instantaneous Input of the Steering Wheel against Rollover for Trucks on Horizontal Curves," IJERPH, MDPI, vol. 19(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:888-:d:1322916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.