IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p886-d1322867.html
   My bibliography  Save this article

Air Quality of Private Interiors during the COVID-19 Pandemic: A Case Study of Dormitory Interiors as Shared Spaces

Author

Listed:
  • Rengin Aslanoğlu

    (Institute of Spatial Management, Wrocław University of Environmental and Life Sciences, Grunwaldzka 55, 50-357 Wrocław, Poland)

  • Begüm Ulusoy

    (Interior Architecture and Design, School of Design, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK)

  • Jan K. Kazak

    (Institute of Spatial Management, Wrocław University of Environmental and Life Sciences, Grunwaldzka 55, 50-357 Wrocław, Poland)

Abstract

COVID-19 was a wake-up call for many researchers and designers that encouraged them to create better interiors. Keeping air quality within safe standards is fundamental and the best strategy to stop the spreading of viruses. Being aware of the severity of indoor transmissions of infections, exploring and understanding how they are spread, and how to avoid them can be critical steps to enhance public health. However, many of the private spaces, residential areas and places where multiple people accommodate together remain unattended, such as dormitory buildings. Since many of them do not have an HVAC system, natural ventilation is the primary method for airing dormitory rooms. Therefore, this study aims to reveal existing ventilation conditions in university dormitories, occupants’ behaviors, disinfection, and air cleaning methods in wintertime. For this, a dormitory complex was selected in Ankara (Turkey), whose climate can be compared to many other cities in the northern hemisphere, as an initial case study to provide insight. Overall, it was found that window-opening behaviors of university students are mostly determined by the density of their rooms. The study findings will raise awareness and motivate further studies in architecture, interior architecture, and design disciplines and provide initial knowledge about the topic.

Suggested Citation

  • Rengin Aslanoğlu & Begüm Ulusoy & Jan K. Kazak, 2024. "Air Quality of Private Interiors during the COVID-19 Pandemic: A Case Study of Dormitory Interiors as Shared Spaces," Sustainability, MDPI, vol. 16(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:886-:d:1322867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aviv, Dorit & Chen, Kian Wee & Teitelbaum, Eric & Sheppard, Denon & Pantelic, Jovan & Rysanek, Adam & Meggers, Forrest, 2021. "A fresh (air) look at ventilation for COVID-19: Estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies," Applied Energy, Elsevier, vol. 292(C).
    2. Rune Becher & Johan Øvrevik & Per E. Schwarze & Steinar Nilsen & Jan K. Hongslo & Jan Vilhelm Bakke, 2018. "Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review," IJERPH, MDPI, vol. 15(2), pages 1-14, January.
    3. Riccardo Rossi & Riccardo Ceccato & Massimiliano Gastaldi, 2020. "Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    4. Zhe Yang & Jialei Shen & Zhi Gao, 2018. "Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing," IJERPH, MDPI, vol. 15(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Chiara Pietrogrande & Cristina Colombi & Eleonora Cuccia & Umberto Dal Santo & Luisa Romanato, 2023. "Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM 2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    2. Diana D’Agostino & Martina Di Mascolo & Federico Minelli & Francesco Minichiello, 2024. "A New Tailored Approach to Calculate the Optimal Number of Outdoor Air Changes in School Building HVAC Systems in the Post-COVID-19 Era," Energies, MDPI, vol. 17(11), pages 1-36, June.
    3. Ismail Anil & Omar Alagha, 2020. "Source Apportionment of Ambient Black Carbon during the COVID-19 Lockdown," IJERPH, MDPI, vol. 17(23), pages 1-22, December.
    4. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
    5. Haixia Feng & Zhouhao Wu & Xin Li & Huacai Xian & Qiang Jia & Xingyu Wang & Maoxin Zhu, 2023. "Effect of Transportation Operation on Air Quality in China Based on MODIS AOD during the Epidemic," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    6. Edgar Lorenzo-Sáez & Eloína Coll-Aliaga & Jose-Vicente Oliver-Villanueva & Fernando Prieto del Campo & Victoria Lerma-Arce, 2022. "Analysis of the COVID-19 Lockdown’s Impact on Air Quality in the Larger Cities of Spain," Sustainability, MDPI, vol. 14(9), pages 1-9, May.
    7. Zheng, Xinyao & Zhou, Yuekuan, 2024. "Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning," Energy, Elsevier, vol. 288(C).
    8. Alexandra Monteiro & Celeste Eusébio & Maria João Carneiro & Mara Madaleno & Margarita Robaina & Vitor Rodrigues & Carla Gama & Hélder Relvas & Michael Russo & Kevin Oliveira & Myriam Lopes & Carlos B, 2021. "Tourism and Air Quality during COVID-19 Pandemic: Lessons for the Future," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    9. Gu, Jiaan & Wu, Huijun & Liu, Jia & Ding, Yujie & Liu, Yanchen & Huang, Gongsheng & Xu, Xinhua, 2024. "A comprehensive review of high-transmittance low-conductivity material-assisted radiant cooling air conditioning: Materials, mechanisms, and application perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Diana D’Agostino & Federico Minelli & Francesco Minichiello & Maddalena Musella, 2024. "Improving the Indoor Air Quality of Office Buildings in the Post-Pandemic Era—Impact on Energy Consumption and Costs," Energies, MDPI, vol. 17(4), pages 1-23, February.
    11. Paolo Maranzano & Matteo Maria Pelagatti, 2022. "Spatio-temporal Event Studies for Air Quality Assessment under Cross-sectional Dependence," Papers 2210.17529, arXiv.org.
    12. Wang, Huan & Liang, Chenjiyu & Wang, Guijin & Li, Xianting, 2024. "Energy-saving potential of fresh air management using camera-based indoor occupancy positioning system in public open space," Applied Energy, Elsevier, vol. 356(C).
    13. Costa, Vinicius B.F. & Pereira, Lígia C. & Andrade, Jorge V.B. & Bonatto, Benedito D., 2022. "Future assessment of the impact of the COVID-19 pandemic on the electricity market based on a stochastic socioeconomic model," Applied Energy, Elsevier, vol. 313(C).
    14. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    15. Christos Spandonidis & Dimitrios Paraskevopoulos & Christina Saravanos, 2023. "Neighborhood-Level Particle Pollution Assessment during the COVID-19 Pandemic via a Novel IoT Solution," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    16. Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    17. Jorge Bañuelos-Gimeno & Natalia Sobrino & Rosa María Arce-Ruiz, 2023. "Effects of Mobility Restrictions on Air Pollution in the Madrid Region during the COVID-19 Pandemic and Post-Pandemic Periods," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    18. Janice Hegewald & Melanie Schubert & Matthias Lochmann & Andreas Seidler, 2021. "The Burden of Disease Due to Road Traffic Noise in Hesse, Germany," IJERPH, MDPI, vol. 18(17), pages 1-19, September.
    19. Luís Velez Lapão & Jorge César Correia & Marija Jevtic, 2023. "Public Health Framework for Smart Cities within the Comprehensive Approach to Sustainability in Europe: Case Study of Diabetes," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    20. Amit Kant Kaushik & Mohammed Arif & Matt M. G. Syal & Muhammad Qasim Rana & Olugbenga Timo Oladinrin & Ahlam Ammar Sharif & Ala’a Saleh Alshdiefat, 2022. "Effect of Indoor Environment on Occupant Air Comfort and Productivity in Office Buildings: A Response Surface Analysis Approach," Sustainability, MDPI, vol. 14(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:886-:d:1322867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.