IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p735-d1319172.html
   My bibliography  Save this article

Research on the Spatial Dynamic Evolution of Digital Agriculture—Evidence from China

Author

Listed:
  • Jiajia Meng

    (Sun Wah International Business School, Faculty of Economics, Liaoning University, Shenyang 110036, China)

  • Baoyu Zhao

    (School of Economics, Faculty of Economics, Liaoning University, Shenyang 110036, China)

  • Yuxiao Song

    (Department of International Relations, Ritsumeikan University, Kyoto 603-8577, Japan)

  • Xiaomei Lin

    (Sun Wah International Business School, Faculty of Economics, Liaoning University, Shenyang 110036, China)

Abstract

Digital agriculture serves as a pivotal means of ushering in innovative agricultural practices and achieving sustainable agricultural development. Although agricultural digitalization has received increasing attention, the unbalanced development and regional disparities of digital agriculture are still key obstacles to sustainable agricultural development. Based on the data of 31 provinces in China from 2013 to 2021, this study evaluates the development level of digital agriculture in China, and further analyzes the distribution pattern, spatial characteristics, and transition probabilities of digital agriculture from a regional perspective. The index system of the digital agriculture development level is constructed from five aspects: infrastructure, talent resources, agricultural informatization, the digitization of agricultural production processes, and agricultural production efficiency. Among these, infrastructure and talent resources reflect the resources needed for the development of digital agriculture; agricultural informatization and the digitization of the agricultural production process indicate the role of digitization in the process of agricultural development; and the agricultural production efficiency is the goal of the digital agriculture development, which is a critical criteria of its evaluation. The weighted analysis method of objective sequential analysis, which combines the dynamic level of indicators and sequential relationships, is used to assign weights to the indicators. In addition, to address the regional disparities in the development level of digital agriculture, kernel density estimation, Moran’s index, and (spatial) Markov chain analysis are applied to analyze the spatial dynamic evolution of digital agriculture in China. The findings reveal substantial regional disparities in digital agriculture development within China, particularly in the Western region, where development lags behind. Moreover, this study offers actionable policy recommendations for policymakers to strengthen regional infrastructure and talent cultivation, as well as other aspects of digital agriculture development, to mitigate regional differences and provide reference for other emerging countries.

Suggested Citation

  • Jiajia Meng & Baoyu Zhao & Yuxiao Song & Xiaomei Lin, 2024. "Research on the Spatial Dynamic Evolution of Digital Agriculture—Evidence from China," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:735-:d:1319172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    2. Zhiqiang Zhou & Wenyan Liu & Huilin Wang & Jingyu Yang, 2022. "The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation," IJERPH, MDPI, vol. 19(17), pages 1-19, August.
    3. Qi Jiang & Jizhi Li & Hongyun Si & Yangyue Su, 2022. "The Impact of the Digital Economy on Agricultural Green Development: Evidence from China," Agriculture, MDPI, vol. 12(8), pages 1-22, July.
    4. Yuan Wang & Yifang Huang & Yihua Zhang, 2023. "Coupling and Coordinated Development of Digital Economy and Rural Revitalisation and Analysis of Influencing Factors," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    5. Peng, Zhuangzhuang & Dan, Ting, 2023. "Digital dividend or digital divide? Digital economy and urban-rural income inequality in China," Telecommunications Policy, Elsevier, vol. 47(9).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caroline Mendonça Nogueira Paiva & Derick David Quintino & Thacyo Bruno Custódio de Morais & Elisa Guimarães Cozadi & Jaqueline Severino da Costa & Paulo Henrique Montagnana Vicente Leme & José Robert, 2024. "Pathways to Rural Sustainability: Opportunities and Challenges in the Creation of an Agrotechnological District in Ingaí City, Brazil," Agriculture, MDPI, vol. 14(12), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Tian & Qin Liu & Yiting Ye & Zhaofang Zhang & Ribesh Khanal, 2023. "How the Rural Digital Economy Drives Rural Industrial Revitalization—Case Study of China’s 30 Provinces," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Viet Ha Trinh Thi & Wenqi Zhou, 2024. "A Systematic Analysis of the Development of Agricultural Modernization and Its Effect on Crop Production in Northeastern China," Sustainability, MDPI, vol. 16(12), pages 1-12, June.
    4. Yulong Jie & Shuigen Hu & Siling Zhu & Lieen Weng, 2024. "How Digitalization and Its Context Affect the Urban–Rural Income Gap: A Configurational Analysis Based on 274 Prefecture-Level Administrative Regions in China," Land, MDPI, vol. 13(12), pages 1-41, December.
    5. Yang, Changjin & Qi, Huarui & Jia, Lijun & Wang, Yanjiao & Huang, Dan, 2024. "Impact of digital technologies and financial development on green growth: Role of mineral resources, institutional quality, and human development in South Asia," Resources Policy, Elsevier, vol. 90(C).
    6. Wei Yu & Huiqin Huang & Xinyan Kong & Keying Zhu, 2023. "Can Digital Inclusive Finance Improve the Financial Performance of SMEs?," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    7. Wenqi Li & Li Zhang & Inhee Lee & Menelaos Gkartzios, 2023. "Overview of Social Policies for Town and Village Development in Response to Rural Shrinkage in East Asia: The Cases of Japan, South Korea and China," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    8. Lixin Zhou & Caiping Qu & Li Zhi, 2024. "Research on the Impact of Digital Infrastructure on Urban Breakthrough Green Innovation: A Case Study of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    9. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    10. Min Zhu & Mengqi Sun & Ehsan Elahi & Yajie Li & Zainab Khalid, 2023. "Analyzing the Relationship between Green Finance and Agricultural Industrial Upgrading: A Panel Data Study of 31 Provinces in China," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    11. Jianxu Liu & Xiaoqing Li & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    12. Wen Yao & Zhuo Sun, 2023. "The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    13. Gang Wang & Xiaomei Gao & Minggang Fu & Zihao Zhou & Kexin Song & Jie Li, 2024. "Sustainable Corn Stubble Management Is Site Specific: A Study in Northeastern China," Sustainability, MDPI, vol. 16(15), pages 1-15, August.
    14. Jiaxuan Li & Zhiyuan Peng, 2024. "Impact of Digital Villages on Agricultural Green Growth Based on Empirical Analysis of Chinese Provincial Data," Sustainability, MDPI, vol. 16(21), pages 1-27, November.
    15. Kaiwen Ji & Qiaoyun Hou & Yi Yu & Dan Pan, 2023. "Rural E-Commerce and Agricultural Carbon Emission Reduction: A Quasi-Natural Experiment from China’s Rural E-Commerce Demonstration County Program Based on 355 Cities in Ten Years," Agriculture, MDPI, vol. 14(1), pages 1-16, December.
    16. Lingui Qin & Yan Zhang & Yige Wang & Xinning Pan & Zhe Xu, 2024. "Research on the Impact of Digital Green Finance on Agricultural Green Total Factor Productivity: Evidence from China," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    17. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    18. Wenjun Ge & Siyuan Wu & Derong Yang, 2024. "Who are the genuine contributors to economic development under environmental regulation? Evidence from total factor productivity in the three industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 22801-22838, September.
    19. Tiantian Su & Cuixia Li, 2024. "Has the Digital Economy Boosted Carbon Reduction in Livestock Farming in China?," Agriculture, MDPI, vol. 14(9), pages 1-23, September.
    20. Awais, Minahil & Afzal, Ayesha & Firdousi, Saba & Hasnaoui, Amir, 2023. "Is fintech the new path to sustainable resource utilisation and economic development?," Resources Policy, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:735-:d:1319172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.