IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p568-d1315898.html
   My bibliography  Save this article

Effect of a Storage System in a Microgrid with EDR and Economic Dispatch Considering Renewable and Conventional Energy Sources

Author

Listed:
  • O. Aguilar-Mejía

    (School Engineering, UPAEP University, Puebla 72410, Mexico)

  • H. Minor-Popocatl

    (School Engineering, UPAEP University, Puebla 72410, Mexico)

  • O. S. Caballero-Morales

    (School Engineering, UPAEP University, Puebla 72410, Mexico)

  • A. F. Miranda-Pérez

    (School Engineering, UPAEP University, Puebla 72410, Mexico)

Abstract

Due to the importance that organizations and governments have placed on environmental pollution and the policies that force organizations to comply with environmental standards, the use of renewable energy sources to meet energy requirements becomes important. The problem of the economic dispatch consists of satisfying the energy demand of the clients, establishing the most convenient source of supply at each moment, considering the established objective (minimize the operating cost of the microgrid) and satisfying the established restrictions. This paper addresses the problem of economic dispatch in a microgrid with a mathematical programming approach. The proposal to meet the energy demand considers: (a) interconnection to the main grid, (b) conventional diesel generators, (c) a photovoltaic system, (d) a hydroelectric turbine, (e) a wind system, (f) a battery-based storage system, (g) capacity to exchange energy with the main grid, (h) incentive for reducing electricity demand (EDR) by customers when an environmental contingency occurs and (i) regeneration of pollutants emitted by conventional generators. The proposal is implemented in the Lingo 17 software. The results show that by including a BESS and the EDR program, it is possible to save between 18% and 75% of the costs of the objective function and stop emitting a little more than 195 kg of pollutants into the environment.

Suggested Citation

  • O. Aguilar-Mejía & H. Minor-Popocatl & O. S. Caballero-Morales & A. F. Miranda-Pérez, 2024. "Effect of a Storage System in a Microgrid with EDR and Economic Dispatch Considering Renewable and Conventional Energy Sources," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:568-:d:1315898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    2. Franca, Rodrigo B. & Jones, Erick C. & Richards, Casey N. & Carlson, Jonathan P., 2010. "Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality," International Journal of Production Economics, Elsevier, vol. 127(2), pages 292-299, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    3. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    4. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    5. Vinay Kumar Jadoun & Nipun Sharma & Piyush Jha & Jayalakshmi N. S. & Hasmat Malik & Fausto Pedro Garcia Márquez, 2021. "Optimal Scheduling of Dynamic Pricing Based V2G and G2V Operation in Microgrid Using Improved Elephant Herding Optimization," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    6. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    7. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    8. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    9. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    10. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Fernando Lezama & Ricardo Faia & Pedro Faria & Zita Vale, 2020. "Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms," Energies, MDPI, vol. 13(10), pages 1-18, May.
    12. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    13. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    15. Andrew Blohm & Jaden Crawford & Steven A. Gabriel, 2021. "Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study," Energies, MDPI, vol. 14(4), pages 1-16, February.
    16. Erick C. Jones, 2024. "Lithium Supply Chain Optimization: A Global Analysis of Critical Minerals for Batteries," Energies, MDPI, vol. 17(11), pages 1-31, May.
    17. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    18. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    19. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    20. Vahdani, Behnam & Mohammadi, M., 2015. "A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 67-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:568-:d:1315898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.