IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11184-d1548249.html
   My bibliography  Save this article

Wetland Carbon Dynamics in Illinois: Implications for Landscape Architectural Practice

Author

Listed:
  • Bo Pang

    (Department of Landscape Architecture, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61820, USA)

  • Brian Deal

    (Department of Landscape Architecture, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61820, USA)

Abstract

Wetlands play a crucial role in carbon sequestration. The integration of wetland carbon dynamics into landscape architecture, however, has been challenging, mainly due to gaps between scientific knowledge and landscape practice norms. While the carbon performance of different wetland types is well established in the ecological sciences literature, our study pioneers the translation of this scientific understanding into actionable landscape design guidance. We achieve this through a comprehensive, spatially explicit analysis of wetland carbon dynamics using 2024 National Wetlands Inventory data and other spatial datasets. We analyze carbon flux rates across 13 distinct wetland types in Illinois to help quantify useful information related to designing for carbon outcomes. Our analysis reveals that in Illinois, bottomland forests function as primary carbon sinks (709,462 MtC/year), while perennial deepwater rivers act as significant carbon emitters (−2,573,586 MtC/year). We also identify a notable north–south gradient in sequestration capacity, that helps demonstrate how regional factors influence wetland and other stormwater management design strategies. The work provides landscape architects with evidence-based parameters for evaluating carbon sequestration potential in wetland design decisions, while also acknowledging the need to balance carbon goals with other ecosystem services. This research advances the profession’s capacity to move beyond generic sustainable design principles toward quantifiable climate-responsive solutions, helping landscape architects make informed decisions about wetland type selection and placement in the context of climate change mitigation.

Suggested Citation

  • Bo Pang & Brian Deal, 2024. "Wetland Carbon Dynamics in Illinois: Implications for Landscape Architectural Practice," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11184-:d:1548249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Pang & Brian Deal, 2024. "A Review on the Use of Geodesign Processes in Managing Flood Vulnerability," Land, MDPI, vol. 13(6), pages 1-17, May.
    2. Hongyang Chen & Xiao Xu & Changming Fang & Bo Li & Ming Nie, 2021. "Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth," Nature Climate Change, Nature, vol. 11(9), pages 766-771, September.
    3. Alex C Valach & Kuno Kasak & Kyle S Hemes & Tyler L Anthony & Iryna Dronova & Sophie Taddeo & Whendee L Silver & Daphne Szutu & Joseph Verfaillie & Dennis D Baldocchi, 2021. "Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sana Basheer & Xiuquan Wang & Quan Van Dau & Muhammad Awais & Pelin Kinay & Tianze Pang & Muhammad Qasim Mahmood, 2024. "Quantification of Carbon Flux Patterns in Ecosystems: A Case Study of Prince Edward Island," Land, MDPI, vol. 13(10), pages 1-22, October.
    2. Delanie M. Spangler & Anna Christina Tyler & Carmody K. McCalley, 2021. "Effects of Grazer Exclusion on Carbon Cycling in Created Freshwater Wetlands," Land, MDPI, vol. 10(8), pages 1-18, July.
    3. Qing Ma & Yongjun Gao & Bo Sun & Jianlong Du & Hong Zhang & Ding Ma, 2024. "Grave-to-cradle dry reforming of plastics via Joule heating," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yunying Li & Wenjie Fan & Guni Xiang & Zhihao Xu, 2023. "Evaluating the Feedback of the Reservoir Methane Cycle to Climate Warming under Hydrological Uncertainty," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    5. Xue Zhang & Xiaodong Yu & Yunxiao Cao & Jiani Yue & Shan Wang & Yunxia Liu, 2024. "The effects of diverse microbial community structures, driven by arbuscular mycorrhizal fungi inoculation, on carbon release from a paddy field," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(1), pages 48-59.
    6. repec:caa:jnlpse:v:preprint:id:340-2023-pse is not listed on IDEAS
    7. Jin Wang & Jingren Yu & Manjuan Shen & Shengquan Che, 2024. "Study on the Optimization of Carbon Sequestration in Shanghai’s Urban Artificial Wetlands: The Cases of Shanghai Fish and Dishui Lake," Land, MDPI, vol. 13(12), pages 1-20, December.
    8. Xu Liu & Zhixiang Zhou, 2024. "Multi-Objective Urban Green Space Optimization of Wetland Cities Based on the Carbon Balance: A Case Study in Wuhan," Land, MDPI, vol. 13(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11184-:d:1548249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.