IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10759-d1539183.html
   My bibliography  Save this article

Enhancing Transformer Protection: A Machine Learning Framework for Early Fault Detection

Author

Listed:
  • Mohammed Alenezi

    (Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Fatih Anayi

    (Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Michael Packianather

    (High-Value Manufacturing Group, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Mokhtar Shouran

    (The Libyan Center for Engineering Research and Information Technology, Bani Walid 00218, Libya
    Department of Control Engineering, College of Electronics Technology, Bani Walid 00218, Libya)

Abstract

The reliable operation of power transformers is essential for grid stability, yet existing fault detection methods often suffer from inaccuracies and high false alarm rates. This study introduces a machine learning framework leveraging voltage signals for early fault detection. Simulating diverse fault conditions—including single line-to-ground, line-to-line, turn-to-ground, and turn-to-turn faults—on a laboratory-scale three-phase transformer, we evaluated decision trees, support vector machines, and logistic regression models on a dataset of 6000 samples. Decision trees emerged as the most effective, achieving 99.90% accuracy during 5-fold cross-validation and 95% accuracy on a separate test set of 400 unseen samples. Notably, the framework achieved a low false alarm rate of 0.47% on a separate 6000-sample healthy condition dataset. These results highlight the proposed method’s potential to provide a cost-effective, robust, and scalable solution for enhancing transformer fault detection and advancing grid reliability. This demonstrates the efficacy of voltage-based machine learning for transformer diagnostics, offering a practical and resource-efficient alternative to traditional methods.

Suggested Citation

  • Mohammed Alenezi & Fatih Anayi & Michael Packianather & Mokhtar Shouran, 2024. "Enhancing Transformer Protection: A Machine Learning Framework for Early Fault Detection," Sustainability, MDPI, vol. 16(23), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10759-:d:1539183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Othman Abdusalam & Alasmer Ibrahim & Fatih Anayi & Michael Packianather, 2022. "New Hybrid Machine Learning Method for Detecting Faults in Three-Phase Power Transformers," Energies, MDPI, vol. 15(11), pages 1-15, May.
    2. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based on Chemical Reaction Optimization and Twin Support Vector Machine," Energies, MDPI, vol. 12(5), pages 1-18, March.
    3. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    4. Tamer Khatib & Gazi Arar, 2020. "Identification of Power Transformer Currents by Using Random Forest and Boosting Techniques," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    2. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    3. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    4. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.
    5. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.
    6. Enwen Li & Linong Wang & Bin Song & Siliang Jian, 2018. "Improved Fuzzy C-Means Clustering for Transformer Fault Diagnosis Using Dissolved Gas Analysis Data," Energies, MDPI, vol. 11(9), pages 1-17, September.
    7. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    8. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    9. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    10. Jonathan Velasco Costa & Diogo F. F. da Silva & Paulo J. Costa Branco, 2022. "Large-Power Transformers: Time Now for Addressing Their Monitoring and Failure Investigation Techniques," Energies, MDPI, vol. 15(13), pages 1-59, June.
    11. Zhou Ruhan & Nurulafiqah Nadzirah Binti Mansor & Hazlee Azil Illias, 2023. "Identification of Inrush Current Using a GSA-BP Network," Energies, MDPI, vol. 16(5), pages 1-22, February.
    12. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    13. Bonginkosi A. Thango, 2022. "Dissolved Gas Analysis and Application of Artificial Intelligence Technique for Fault Diagnosis in Power Transformers: A South African Case Study," Energies, MDPI, vol. 15(23), pages 1-17, November.
    14. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    15. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    16. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based on Chemical Reaction Optimization and Twin Support Vector Machine," Energies, MDPI, vol. 12(5), pages 1-18, March.
    17. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    18. Qunli Wu & Hongjie Zhang, 2019. "A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    19. Ning Wang & Fei Zhao, 2020. "An Assessment of the Condition of Distribution Network Equipment Based on Large Data Fuzzy Decision-Making," Energies, MDPI, vol. 13(1), pages 1-13, January.
    20. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10759-:d:1539183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.