IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10740-d1538661.html
   My bibliography  Save this article

Wind and Photovoltaic Power Generation Forecasting for Virtual Power Plants Based on the Fusion of Improved K-Means Cluster Analysis and Deep Learning

Author

Listed:
  • Zhichao Qiu

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Ye Tian

    (Institute of Electric Power Science, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

  • Yanhong Luo

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Taiyu Gu

    (Institute of Electric Power Science, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

  • Hengyu Liu

    (Institute of Electric Power Science, State Grid Liaoning Electric Power Co., Ltd., Shenyang 110000, China)

Abstract

Virtual power plants (VPPs) have emerged as an innovative solution for modern power systems, particularly for integrating renewable energy sources. This study proposes a novel prediction approach combining improved K-means clustering with Time Convolutional Networks (TCNs), a Bi-directional Gated Recurrent Unit (BiGRU), and an attention mechanism to enhance the forecasting accuracy of wind and photovoltaic power generation in VPPs. The proposed TCN-BiGRU-Attention model demonstrates superior predictive performance compared to traditional models, achieving high accuracy and robustness. These results provide a reliable basis for optimizing VPP operations and integrating renewable energy sources effectively.

Suggested Citation

  • Zhichao Qiu & Ye Tian & Yanhong Luo & Taiyu Gu & Hengyu Liu, 2024. "Wind and Photovoltaic Power Generation Forecasting for Virtual Power Plants Based on the Fusion of Improved K-Means Cluster Analysis and Deep Learning," Sustainability, MDPI, vol. 16(23), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10740-:d:1538661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
    2. Wang, Yuqing & Fu, Wenjie & Wang, Junlong & Zhen, Zhao & Wang, Fei, 2024. "Ultra-short-term distributed PV power forecasting for virtual power plant considering data-scarce scenarios," Applied Energy, Elsevier, vol. 373(C).
    3. Dukhwan Yu & Wonik Choi & Myoungsoo Kim & Ling Liu, 2020. "Forecasting Day-Ahead Hourly Photovoltaic Power Generation Using Convolutional Self-Attention Based Long Short-Term Memory," Energies, MDPI, vol. 13(15), pages 1-17, August.
    4. Sameer Al-Dahidi & Manoharan Madhiarasan & Loiy Al-Ghussain & Ahmad M. Abubaker & Adnan Darwish Ahmad & Mohammad Alrbai & Mohammadreza Aghaei & Hussein Alahmer & Ali Alahmer & Piero Baraldi & Enrico Z, 2024. "Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework," Energies, MDPI, vol. 17(16), pages 1-38, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    3. Dukhwan Yu & Seowoo Lee & Sangwon Lee & Wonik Choi & Ling Liu, 2020. "Forecasting Photovoltaic Power Generation Using Satellite Images," Energies, MDPI, vol. 13(24), pages 1-15, December.
    4. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    5. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    6. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    7. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    8. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10740-:d:1538661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.