IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10278-d1528095.html
   My bibliography  Save this article

Predicting the Global Distribution of Gryllus bimaculatus Under Climate Change: Implications for Biodiversity and Animal Feed Production

Author

Listed:
  • Sanad H. Ragab

    (Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 4434103, Egypt)

  • Shatha I. Alqurashi

    (Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia)

  • Mohammad M. Aljameeli

    (Department of Biology, College of Science Northern Border University, Arar 73241, Saudi Arabia)

  • Michael G. Tyshenko

    (Risk Sciences International, Ottawa, ON K1Z 7T1, Canada)

  • Ahmed H. Abdelwahab

    (Piercing & Sucking Insect Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 3725004, Egypt)

  • Tharwat A. Selim

    (Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 4434103, Egypt)

Abstract

The potential range and distribution of insects are greatly impacted by climate change. This study evaluates the potential global shifts in the range of Gryllus bimaculatus (Orthoptera: Gryllidae) under several climate change scenarios. The Global Biodiversity Information Facility provided the location data for G. bimaculatus , which included nineteen bioclimatic layers (bio01–bio19), elevation data from the WorldClim database, and land cover data. For the near future (2021–2040) and far future (2081–2100) under low (SSP1-2.6) and high (SSP5-8.5) emission scenarios, the Beijing Climate Center Climate System Model (BCC-CSM2-MR) and the Institute Pierre-Simon Laplace Coupled Model Intercomparison Project (IPSL-CM6A-LR) were used. Assessing habitat gain, loss, and stability for G. bimaculatus under potential scenarios was part of the evaluation analysis. The results showed that the main environmental parameters affecting the distribution of G. bimaculatus were mean temperature of the driest quarter, mean diurnal temperature range, isothermality, and seasonal precipitation. Since birds, small mammals, and other insectivorous insects rely on G. bimaculatus and other cricket species as their primary food supply, habitat loss necessitates management attention to the effects on the food web. The spread of G. bimaculatus as a sentinel species in the food chain and its use in animal feeds are both impacted by habitat loss and gain.

Suggested Citation

  • Sanad H. Ragab & Shatha I. Alqurashi & Mohammad M. Aljameeli & Michael G. Tyshenko & Ahmed H. Abdelwahab & Tharwat A. Selim, 2024. "Predicting the Global Distribution of Gryllus bimaculatus Under Climate Change: Implications for Biodiversity and Animal Feed Production," Sustainability, MDPI, vol. 16(23), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10278-:d:1528095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James. F. Gillooly & Eric L. Charnov & Geoffrey B. West & Van M. Savage & James H. Brown, 2002. "Effects of size and temperature on developmental time," Nature, Nature, vol. 417(6884), pages 70-73, May.
    2. N. W. Arnell & J. A. Lowe & A. J. Challinor & T. J. Osborn, 2019. "Global and regional impacts of climate change at different levels of global temperature increase," Climatic Change, Springer, vol. 155(3), pages 377-391, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Scott N. & Zhang, Xiaoxian & Crawford, John W. & Gregory, Peter J. & Young, Iain M., 2007. "Egg hatching and survival time of soil-dwelling insect larvae: A partial differential equation model and experimental validation," Ecological Modelling, Elsevier, vol. 202(3), pages 493-502.
    2. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    3. Anssi Paasi, 2023. "Regional geographies of climate change," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 114(2), pages 71-78, April.
    4. Yuchuan Lai & Matteo Pozzi, 2024. "Sequential learning of climate change via a physical-parameter-based state-space model and Bayesian inference," Climatic Change, Springer, vol. 177(6), pages 1-22, June.
    5. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    6. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    7. Orkun Davutluoğlu & Abdurrahman Yavuzdeğer & Burak Esenboğa & Özge Demirdelen & Kübra Tümay Ateş & Tuğçe Demirdelen, 2024. "Carbon Emission Analysis and Reporting in Urban Emissions: An Analysis of the Greenhouse Gas Inventories and Climate Action Plans in Sarıçam Municipality," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    8. Álvaro-Francisco Morote & Jorge Olcina, 2024. "Preventing through Sustainability Education: Training and the Perception of Floods among School Children," Sustainability, MDPI, vol. 16(11), pages 1-15, May.
    9. Boon Teck Tan & Pei Shan Fam & R. B. Radin Firdaus & Mou Leong Tan & Mahinda Senevi Gunaratne, 2021. "Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis," Agriculture, MDPI, vol. 11(6), pages 1-17, June.
    10. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
    11. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    12. Usaku Reuben & Ahmad F. Ismail & Abdul L. Ahmad & Humphrey M. Maina & Aziah Daud, 2019. "Occupational and Environmental Risk Factors Influencing the Inducement of Erythema among Nigerian Laboratory University Workers with Multiple Chemical Exposures," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    13. Swatantra Kumar Dubey & JungJin Kim & Syewoon Hwang & Younggu Her & Hanseok Jeong, 2023. "Variability of Extreme Events in Coastal and Inland Areas of South Korea during 1961–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    14. Jieming Chou & Mingyang Sun & Wenjie Dong & Weixing Zhao & Jiangnan Li & Yuanmeng Li & Jianyin Zhou, 2021. "Assessment and Prediction of Climate Risks in Three Major Urban Agglomerations of Eastern China," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    15. Hugo Gaspar Hernandez-Palma & Vladimir Sousa Santos & Adalberto Ospino Castro & Angélica Jiménez Coronado & Roberto Morales Espinoza & Jonny Rafael Plazas Alvarado, 2024. "Sustainable Projects Based on the Intersection of Clean Energy with the Health Sector: A Bibliometric Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 489-496, May.
    16. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    17. Adam H. Sobel, 2021. "Usable climate science is adaptation science," Climatic Change, Springer, vol. 166(1), pages 1-11, May.
    18. Ha Kyung Lee & So Jeong Lee & Min Kyung Kim & Sang Don Lee, 2020. "Prediction of Plant Phenological Shift under Climate Change in South Korea," Sustainability, MDPI, vol. 12(21), pages 1-14, November.
    19. Pin, Lantos A. & Pennink, Bartjan J.W. & Balsters, Herman & Sianipar, Corinthias P.M., 2021. "Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia," Technology in Society, Elsevier, vol. 66(C).
    20. Iván García Kerdan & Sara Giarola & Ellis Skinner & Marin Tuleu & Adam Hawkes, 2020. "Modelling Future Agricultural Mechanisation of Major Crops in China: An Assessment of Energy Demand, Land Use and Emissions," Energies, MDPI, vol. 13(24), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10278-:d:1528095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.