IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10238-d1527340.html
   My bibliography  Save this article

Economic Feasibility of Biogas Microgeneration from Food Waste: Potential for Sustainable Energy in Northeastern Brazil

Author

Listed:
  • Iván D. Roa

    (Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Jorge R. Henriquez

    (Research Group on Thermochemical Conversion, Department of Mechanical Engineering, Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Emmanuel D. Dutra

    (Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Rômulo S. C. Menezes

    (Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Monaliza M. M. Andrade

    (Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Edvaldo P. Santos Junior

    (Research Group on Thermochemical Conversion, Department of Mechanical Engineering, Federal University of Pernambuco, Recife 50670-901, PE, Brazil)

  • Luiz Célio S. Rocha

    (Management Department, Federal Institute of Education, Science and Technology, North of Minas Gerais, Almenara 39900-000, MG, Brazil)

  • Paulo Rotella Junior

    (Department of Production Engineering, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil)

Abstract

This study evaluates three scenarios’ technical and economic viability for implementing a microgeneration power plant using biogas derived from the anaerobic digestion of food waste. The case study focuses on the Federal University of Pernambuco (UFPE) campus in Recife, northeastern (NE) Brazil, targeting the organic fraction of solid waste from food units (restaurants, canteens, and kiosks). The analysis was based on field data, the chemical composition of the waste, and the electric energy consumption. Biogas production of 166 m 3 /day from 1 ton/day of food waste was estimated using an anaerobic reactor of 126 m 3 . This amount of biogas could generate about 360 kWh/day of electricity if the plant operates at peak hours using a generator set with an alternative internal combustion engine of 120 kW, with a consumption of 66 m 3 /h and fuel efficiency of 30%. The system could generate 390 kWh/day of electrical energy using a microturbine, with a consumption of 78 m 3 /h and 30% efficiency. The scenario utilizing a tubular reactor and an internal combustion engine demonstrated the best economic viability. While this study focuses on financial aspects, the findings suggest significant potential contributions to sustainability, including reducing greenhouse gas (GHG) emissions and advancing renewable energy solutions. This model can be adapted for small NE Brazil municipalities, offering economic and environmental benefits.

Suggested Citation

  • Iván D. Roa & Jorge R. Henriquez & Emmanuel D. Dutra & Rômulo S. C. Menezes & Monaliza M. M. Andrade & Edvaldo P. Santos Junior & Luiz Célio S. Rocha & Paulo Rotella Junior, 2024. "Economic Feasibility of Biogas Microgeneration from Food Waste: Potential for Sustainable Energy in Northeastern Brazil," Sustainability, MDPI, vol. 16(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10238-:d:1527340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nketiah, Emmanuel & Song, Huaming & Adjei, Mavis & Adu-Gyamfi, Gibbson & Obuobi, Bright & Cudjoe, Dan, 2024. "Assessment of energy generation potential and mitigating greenhouse gas emissions from biogas from food waste: Insights from Jiangsu Province," Applied Energy, Elsevier, vol. 371(C).
    2. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).
    3. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    4. Papargyriou, Despoina & Broumidis, Emmanouil & de Vere-Tucker, Matthew & Gavrielides, Stelios & Hilditch, Paul & Irvine, John T.S. & Bonaccorso, Alfredo D., 2019. "Investigation of solid base catalysts for biodiesel production from fish oil," Renewable Energy, Elsevier, vol. 139(C), pages 661-669.
    5. Aquila, Giancarlo & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Balestrassi, Pedro Paulo & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2024. "Net metering rolling credits vs. net billing buyback: An economic analysis of a policy option proposal for photovoltaic prosumers," Renewable Energy, Elsevier, vol. 232(C).
    6. Hossain, Md. Sanowar & Das, Barun K. & Das, Arnob & Roy, Tamal Krishna, 2024. "Investigating the techno-economic and environmental feasibility of biogas-based power generation potential using food waste in Bangladesh," Renewable Energy, Elsevier, vol. 232(C).
    7. Andrea Dell’Orto & Cristina Trois, 2024. "Double-Stage Anaerobic Digestion for Biohydrogen Production: A Strategy for Organic Waste Diversion and Emission Reduction in a South African Municipality," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    8. Lantz, Mikael, 2012. "The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies," Applied Energy, Elsevier, vol. 98(C), pages 502-511.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    2. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    3. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    4. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    5. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    6. Nketiah, Emmanuel & Song, Huaming & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Cudjoe, Dan, 2022. "Citizens' willingness to pay for local anaerobic digestion energy: The influence of altruistic value and knowledge," Energy, Elsevier, vol. 260(C).
    7. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    8. Obuobi, Bright & Zhang, Yifeng & Adu-Gyamfi, Gibbson & Nketiah, Emmanuel & Grant, Martin Kobby & Adjei, Mavis & Cudjoe, Dan, 2022. "Fruits and vegetable waste management behavior among retailers in Kumasi, Ghana," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    9. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    10. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    11. Li, Yan & Zhang, Qi & Wang, Ge & McLellan, Benjamin & Liu, Xue Fei & Wang, Le, 2018. "A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 214-223.
    12. Fang Shi & Xiaodan Li & Ying Cao & Bo Bai, 2023. "The Feasibility Analysis of “Ecological Photovoltaics” from Coal Gangue Mountains," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    13. Stürmer, B. & Leiers, D. & Anspach, V. & Brügging, E. & Scharfy, D. & Wissel, T., 2021. "Agricultural biogas production: A regional comparison of technical parameters," Renewable Energy, Elsevier, vol. 164(C), pages 171-182.
    14. Hengtian Wang & Xiaolong Yang & Xinxin Xu & Liu Fei, 2021. "Exploring Opportunities and Challenges of Solar PV Power under Carbon Peak Scenario in China: A PEST Analysis," Energies, MDPI, vol. 14(11), pages 1-28, May.
    15. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    16. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    17. Adalberto Ospino-Castro & Carlos Robles-Algar n & Juan Tob n-Perez & Rafael Pe a-Gallardo & Melisa Acosta-coll, 2020. "Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 337-346.
    18. Bai, Bo & Lee, Henry & Shi, Yiwei & Wang, Zheng, 2024. "Integrating solar electricity into a fossil fueled system," Energy, Elsevier, vol. 304(C).
    19. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    20. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10238-:d:1527340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.