IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10179-d1526171.html
   My bibliography  Save this article

How Much Will the Sichuan–Tibet Railway Improve the Accessibility of Tibet, China: A Comparative Study by Multiple Scenarios

Author

Listed:
  • Yiran Du

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China)

  • Chenrui Tian

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China)

  • Yi Miao

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China)

Abstract

The accessibility improvement effect of transportation trunk lines can provide a reference for further optimizing regional transportation. Focusing on the different construction stages of the Sichuan–Tibet Railway (STR), this study determined the weighted average travel time and calculated both the internal and external accessibility of 74 counties in Tibet under scenarios where the STR is not yet operational, partially operational, and fully operational. The results indicate the following: (1) After the full operation of the STR, internal transportation accessibility improved by 45%, with the average travel time reduced by approximately 4 h, showing a significant time-space convergence effect; (2) In terms of external transportation, the full operation of the STR will significantly shorten the inter-provincial travel time of all counties, with the average external travel time reduced by almost 50%, from an average of 45 h to 23 h; (3) The accessibility response of different counties to the operation of the railway exhibits clear spatial differences. The internal accessibility of the counties along the railway line improved by 50–80%, while the improvement rate of counties that are not close to the STR is between 10% and 50%; (4) Although the accessibility improvement effect brought by the construction of the STR is significant, there is still a characteristic of spatial non-equilibrium. Accompanying the operation of the STR, a further eastward-oriented accessibility advantage area has emerged based on the original accessibility advantage areas centered around Lhasa. However, the improvement effect for northwestern counties with accessibility disadvantages remaining very limited. Therefore, more plans for new transportation trunk lines such as the Xinjiang–Tibet Railway are needed, to comprehensively improve the relatively poor and uneven accessibility pattern of Tibet, as well as contribute to the shared well-being of the people and the coordinated development between regions.

Suggested Citation

  • Yiran Du & Chenrui Tian & Yi Miao, 2024. "How Much Will the Sichuan–Tibet Railway Improve the Accessibility of Tibet, China: A Comparative Study by Multiple Scenarios," Sustainability, MDPI, vol. 16(23), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10179-:d:1526171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qianqian Gong & Jiaming Li & Lingzhi Wu & Miner Zhu & Maoyu Luo & Jingyi Sun & Wenqing Fu & Renfeng Ma & Xianjun Liang, 2023. "Exploring Accessibility and Its Impact in the Mountain City: A Typical Case Study of Nyingchi City, Tibet Autonomous Region, China," Land, MDPI, vol. 12(2), pages 1-20, January.
    2. Pyrialakou, V. Dimitra & Gkritza, Konstantina & Fricker, Jon D., 2016. "Accessibility, mobility, and realized travel behavior: Assessing transport disadvantage from a policy perspective," Journal of Transport Geography, Elsevier, vol. 51(C), pages 252-269.
    3. Yu, Miao & Fan, Wei, 2018. "Accessibility impact of future high speed rail corridor on the piedmont Atlantic megaregion," Journal of Transport Geography, Elsevier, vol. 73(C), pages 1-12.
    4. Shicheng Li & Jian Gong & Qinghai Deng & Tianyu Zhou, 2018. "Impacts of the Qinghai–Tibet Railway on Accessibility and Economic Linkage of the Third Pole," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    5. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).
    2. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    4. Dongmei Li & Renai Jiang & Zheyuan Lu & Shanghong Sun & Longguo Wang, 2023. "Does the Construction of High-Speed Rail Change the Development of Regional Finance?," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    5. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    6. Rui Xiao & Guofeng Wang & Meng Wang, 2018. "Transportation Disadvantage and Neighborhood Sociodemographics: A Composite Indicator Approach to Examining Social Inequalities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(1), pages 29-43, May.
    7. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    8. Ren, Xiaohang & Zeng, Gudian & Dong, Kangyin & Wang, Kun, 2023. "How does high-speed rail affect tourism development? The case of the Sichuan-Chongqing Economic Circle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    10. Lingzhi Wu & Lei Zhang & Jiaming Li & Renfeng Ma, 2023. "Heterogeneity and Spatial Governance of Synergy between Human Activities and Ecological Conservation in the Qinghai–Xizang Plateau, China," Land, MDPI, vol. 12(12), pages 1-24, November.
    11. Elisa Borowski & Alireza Ermagun & David Levinson, 2018. "Disparity of Access: Variations in Transit Service by Race, Ethnicity, Income, and Auto Availability," Working Papers 175, University of Minnesota: Nexus Research Group.
    12. Mengzhi Zou & Changyou Li & Yanni Xiong, 2022. "Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    13. Wong, Sandy, 2018. "The limitations of using activity space measurements for representing the mobilities of individuals with visual impairment: A mixed methods case study in the San Francisco Bay Area," Journal of Transport Geography, Elsevier, vol. 66(C), pages 300-308.
    14. Wu, Bingyu & Levinson, David M., 2024. "A multi-modal analysis of the effect of transport on population and productivity in China," Journal of Transport Geography, Elsevier, vol. 116(C).
    15. Wu, Rong & Li, Yingcheng & Wang, Shaojian, 2022. "Will the construction of high-speed rail accelerate urban land expansion? Evidences from Chinese cities," Land Use Policy, Elsevier, vol. 114(C).
    16. Jingming Liu & Xianhui Hou & Chuyu Xia & Xiang Kang & Yujun Zhou, 2021. "Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data," Land, MDPI, vol. 10(6), pages 1-20, May.
    17. Luz, Gregorio & Barboza, Matheus Henrique Cunha & da Silva Portugal, Licinio & Giannotti, Mariana & van Wee, Bert, 2022. "Does better accessibility help to reduce social exclusion? Evidence from the City of São Paulo, Brazil," SocArXiv 2p896, Center for Open Science.
    18. Ao, Yibin & Zhang, Yuting & Wang, Yan & Chen, Yunfeng & Yang, Linchuan, 2020. "Influences of rural built environment on travel mode choice of rural residents: The case of rural Sichuan," Journal of Transport Geography, Elsevier, vol. 85(C).
    19. Kain Glensor, 2018. "Development of an Index of Transport-User Vulnerability, and its Application in Enschede, The Netherlands," Sustainability, MDPI, vol. 10(7), pages 1-12, July.
    20. Bantis, Thanos & Haworth, James, 2020. "Assessing transport related social exclusion using a capabilities approach to accessibility framework: A dynamic Bayesian network approach," Journal of Transport Geography, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10179-:d:1526171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.