IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p10107-d1524651.html
   My bibliography  Save this article

Quantifying Peak Load-Carrying Capability: A Comprehensive Reliability Analysis of Grid-Connected Hybrid Systems

Author

Listed:
  • Osamah H. Almgbel

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mustafa M. A. Seedahmed

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdullah Ali Alhussainy

    (Department of Electrical Engineering, College of Engineering, University of Prince Mugrin, Madinah 42241, Saudi Arabia)

  • Sultan Alghamdi

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Smart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Muhyaddin Rawa

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Smart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Yusuf A. Alturki

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Smart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Energy leaders around the world are constantly looking into feasibility and opportunities in renewable energy to diversify their energy sources. This study examines the reliability of a grid-connected microgrid consisting of solar energy, wind energy, and storage batteries to supply the required load and share the surplus with the grid. As the reliability of each component separately has an impact on system reliability, in this study, the loss of load expectation (LOLE) technique was used to estimate the peak load-carrying capability (PLCC) of the systems and the duration of outages as a means of analyzing the reliability of these systems and selecting the optimal combination among the cases. Moreover, this study used the load data of the area under study as the primary load and considered the grid as a secondary load to share the surplus after fulfilling the demand requirements. Furthermore, ten cases of grid-connected system configurations were considered to conduct this research, incorporating various combinations of solar panels, wind turbines (WTs), and batteries. The results revealed that, while maintaining an acceptable risk level represented by an LOLE of 0.1 days per year, the WT (850 MW) case emerged as the leading power producer compared to the other cases. It was able to produce 840.245 MW and 818.345 MW as the total power produced and the amount of surplus power that will be delivered to the grid after meeting the primary load needs in the area under study, respectively. This analysis can be informative for administrators in charge of planning and policy-making, helping them to take appropriate action.

Suggested Citation

  • Osamah H. Almgbel & Mustafa M. A. Seedahmed & Abdullah Ali Alhussainy & Sultan Alghamdi & Muhyaddin Rawa & Yusuf A. Alturki, 2024. "Quantifying Peak Load-Carrying Capability: A Comprehensive Reliability Analysis of Grid-Connected Hybrid Systems," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10107-:d:1524651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/10107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/10107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
    3. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    4. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    5. Erdinç, Fatma Gülşen, 2023. "Rolling horizon optimization based real-time energy management of a residential neighborhood considering PV and ESS usage fairness," Applied Energy, Elsevier, vol. 344(C).
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    7. Zixiao Ban & Fei Teng & Huifeng Zhang & Shuo Li & Geyang Xiao & Yajuan Guan, 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    8. Amr Saleh & Walid A. Omran & Hany M. Hasanien & Marcos Tostado-Véliz & Abdulaziz Alkuhayli & Francisco Jurado, 2022. "Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    9. Maria C. Fotopoulou & Panagiotis Drosatos & Stefanos Petridis & Dimitrios Rakopoulos & Fotis Stergiopoulos & Nikolaos Nikolopoulos, 2021. "Model Predictive Control for the Energy Management in a District of Buildings Equipped with Building Integrated Photovoltaic Systems and Batteries," Energies, MDPI, vol. 14(12), pages 1-21, June.
    10. Pengxiang Song & Wenchuan Song & Ao Meng & Hongxue Li, 2024. "Adaptive Equivalent Factor-Based Energy Management Strategy for Plug-In Hybrid Electric Buses Considering Passenger Load Variations," Energies, MDPI, vol. 17(6), pages 1-30, March.
    11. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    12. Pivetta, D. & Dall’Armi, C. & Sandrin, P. & Bogar, M. & Taccani, R., 2024. "The role of hydrogen as enabler of industrial port area decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    14. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    15. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    16. David Holder & Steven David Percy & Ali Yavari, 2024. "A Review of Port Decarbonisation Options: Identified Opportunities for Deploying Hydrogen Technologies," Sustainability, MDPI, vol. 16(8), pages 1-36, April.
    17. Surucu-Balci, Ebru & Iris, Çağatay & Balci, Gökcay, 2024. "Digital information in maritime supply chains with blockchain and cloud platforms: Supply chain capabilities, barriers, and research opportunities," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    18. Hassan, Qusay & Khadom, Anees A. & Algburi, Sameer & Al-Jiboory, Ali Khudhair & Sameen, Aws Zuhair & Alkhafaji, Mohamed Ayad & Mahmoud, Haitham A. & Awwad, Emad Mahrous & Mahood, Hameed B. & Kazem, Hu, 2024. "Implications of a smart grid-integrated renewable distributed generation capacity expansion strategy: The case of Iraq," Renewable Energy, Elsevier, vol. 221(C).
    19. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing & Zhang, Guoqing, 2022. "Implications of government subsidies on shipping companies’ shore power usage strategies in port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    20. Juan Liu & Minwei Liu & Zhimin Wang & Junwen Yang & Suhua Lou, 2022. "Multi-Flexibility Resources Planning for Power System Considering Carbon Trading," Sustainability, MDPI, vol. 14(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10107-:d:1524651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.