IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5440-d1422929.html
   My bibliography  Save this article

Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea

Author

Listed:
  • Jinyeong Lee

    (Electricity Policy Research Center, Korea Electrotechnology Research Institute (KERI), Uiwang 16029, Republic of Korea)

  • Kyungcheol Shin

    (School of Electrical Engineering, Anam Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea)

  • Young-Min Wi

    (Department of Electrical Engineering, Sangmyung University, Seoul 03016, Republic of Korea)

Abstract

With the rise of environmental policies and advanced technologies, power systems are transitioning from centralized to decentralized systems, incorporating more distributed energy resources (DERs). This shift has increased interest in the operational functions of microgrids (MGs). The “Renewable Energy 100%” (RE100) campaign is pushing companies to adopt renewable energy. In South Korea, industrial complex microgrids (ICMGs) aim to achieve RE100 through corporate power purchase agreements (PPAs) with renewable energy providers. ICMGs need to operate in both grid-connected and islanded modes, facing challenges in power transactions due to different operating agents. This study proposes a decentralized optimal power flow (OPF) method using the separable augmented Lagrangian relaxation (SALR) algorithm to solve these power transaction problems without disclosing internal information. The proposed method decomposes the centralized OPF problem into subproblems for each ICMG and solves them in a distributed manner, sharing only transaction prices and amounts. Numerical results from the case study validate the effectiveness of the proposed method.

Suggested Citation

  • Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5440-:d:1422929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    2. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    3. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).
    4. John A. Muckstadt & Sherri A. Koenig, 1977. "An Application of Lagrangian Relaxation to Scheduling in Power-Generation Systems," Operations Research, INFORMS, vol. 25(3), pages 387-403, June.
    5. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    6. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    3. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    4. Amr Saleh & Walid A. Omran & Hany M. Hasanien & Marcos Tostado-Véliz & Abdulaziz Alkuhayli & Francisco Jurado, 2022. "Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    5. Pivetta, D. & Dall’Armi, C. & Sandrin, P. & Bogar, M. & Taccani, R., 2024. "The role of hydrogen as enabler of industrial port area decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    7. David Holder & Steven David Percy & Ali Yavari, 2024. "A Review of Port Decarbonisation Options: Identified Opportunities for Deploying Hydrogen Technologies," Sustainability, MDPI, vol. 16(8), pages 1-36, April.
    8. Surucu-Balci, Ebru & Iris, Çağatay & Balci, Gökcay, 2024. "Digital information in maritime supply chains with blockchain and cloud platforms: Supply chain capabilities, barriers, and research opportunities," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    9. Juan Liu & Minwei Liu & Zhimin Wang & Junwen Yang & Suhua Lou, 2022. "Multi-Flexibility Resources Planning for Power System Considering Carbon Trading," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    10. Jon Williamsson & Nicole Costa & Vendela Santén & Sara Rogerson, 2022. "Barriers and Drivers to the Implementation of Onshore Power Supply—A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    11. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    12. Bin Zhang & Li Sun & Mengyao Yang & Kin-Keung Lai & Bhagwat Ram, 2023. "A Robust Optimization Approach for Smart Energy Market Revenue Management," Energies, MDPI, vol. 16(19), pages 1-14, October.
    13. Lu, Ying & Fang, Sidun & Niu, Tao & Liao, Ruijin, 2023. "Energy-transport scheduling for green vehicles in seaport areas: A review on operation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Sepideh Rezaeeian & Narges Bayat & Abbas Rabiee & Saman Nikkhah & Alireza Soroudi, 2022. "Optimal Scheduling of Reconfigurable Microgrids in Both Grid-Connected and Isolated Modes Considering the Uncertainty of DERs," Energies, MDPI, vol. 15(15), pages 1-18, July.
    15. Chen, Sumin & Zeng, Qingcheng & Li, Yantong, 2023. "Integrated operations planning in highly electrified container terminals considering time-of-use tariffs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    16. Poonam Taneja & Godert van Rhede van der Kloot & Mark van Koningsveld, 2021. "Sustainability Performance of Port Infrastructure—A Case Study of a Quay Wall," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    17. Guoxing Yu & Huihui Song & Meng Liu & Zongxun Song & Yanbin Qu, 2022. "Distributed Weight Adaptive Control for Frequency Regulation of Islanded Microgrid," Energies, MDPI, vol. 15(11), pages 1-16, June.
    18. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.
    19. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2023. "Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology," Energies, MDPI, vol. 16(2), pages 1-20, January.
    20. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5440-:d:1422929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.