IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9385-d1509110.html
   My bibliography  Save this article

The Design of a PV System of a Multi-Location Large Consumer: A Case Study from Al-Balqa Applied University

Author

Listed:
  • Akram Al-Mahrouk

    (Department of Electrical Engineering, Philadelphia University, Jerash 19392, Jordan)

  • Emad Awada

    (Department of Electrical Engineering, Al-Balqa Applied University, Amman 11134, Jordan)

  • Wasseem Al-Rousan

    (Department of Electrical Engineering, Philadelphia University, Jerash 19392, Jordan)

  • Dana Al-Mahrouk

    (Department of Electrical Engineering, Al-Balqa Applied University, Amman 11134, Jordan)

Abstract

This research applies the suggested photovoltaic solar system design to Jordan’s Al-Balqa Applied University. Twelve of the twenty-four college buildings are located on the main campus, while the remaining twelve remote colleges are dispersed throughout Jordan’s many geographic locations, ranging from the far north to the far south. Azimuth angle, irradiation effect, building size, location, power consumption, and student population are all taken into account in the suggested design. Additionally, in-site generation and remote-wheeling generation are two types of solar system installation designs that are taken into consideration. A method for calculating the optimal location of remote-wheeling generation is proposed based on the centroid mass theory. The proposed method is applied in four scenarios. The first three scenarios are single-point, two-point, and three-point centroid locations. The fourth scenario is based on three single points, considering the power distribution regions in Jordan, which cover three regions. The results of the four scenarios will be discussed and demonstrated along with a comprehensive comparison between in-site generation, single-centroid-point remote-wheeling generation, and three-centroid-point remote-wheeling generation.

Suggested Citation

  • Akram Al-Mahrouk & Emad Awada & Wasseem Al-Rousan & Dana Al-Mahrouk, 2024. "The Design of a PV System of a Multi-Location Large Consumer: A Case Study from Al-Balqa Applied University," Sustainability, MDPI, vol. 16(21), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9385-:d:1509110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Markovska, Natasa & Georghiou, George E., 2022. "Virtual net-billing: A fair energy sharing method for collective self-consumption," Energy, Elsevier, vol. 254(PB).
    2. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Muhammad Asif, 2016. "Urban Scale Application of Solar PV to Improve Sustainability in the Building and the Energy Sectors of KSA," Sustainability, MDPI, vol. 8(11), pages 1-11, November.
    4. Carlos Cacciuttolo & Ximena Guardia & Eunice Villicaña, 2024. "Implementation of Renewable Energy from Solar Photovoltaic (PV) Facilities in Peru: A Promising Sustainable Future," Sustainability, MDPI, vol. 16(11), pages 1-40, May.
    5. Jaber, Jamal O., 2002. "Future energy consumption and greenhouse gas emissions in Jordanian industries," Applied Energy, Elsevier, vol. 71(1), pages 15-30, January.
    6. Ehab AlShamaileh & Iessa Sabbe Moosa & Heba Al-Fayyad & Bashar Lahlouh & Hussein A. Kazem & Qusay Abu-Afifeh & Bety S. Al-Saqarat & Muayad Esaifan & Imad Hamadneh, 2022. "Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems," Energies, MDPI, vol. 15(23), pages 1-15, November.
    7. Emad Awada & Eyad Radwan & Suzan Abed & Akram Al-Mahrouk, 2024. "Economic Analysis and Design of Sustainable Solar Electric Vehicle Carport at Applied Science Private University in Jordan," Energies, MDPI, vol. 17(17), pages 1-20, August.
    8. Luka Budin & Goran Grdenić & Marko Delimar, 2021. "A Quadratically Constrained Optimization Problem for Determining the Optimal Nominal Power of a PV System in Net-Metering Model: A Case Study for Croatia," Energies, MDPI, vol. 14(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    2. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    4. Jaber, Jamal O. & Mamlook, Rustom & Awad, Wa'el, 2005. "Evaluation of energy conservation programs in residential sector using fuzzy logic methodology," Energy Policy, Elsevier, vol. 33(10), pages 1329-1338, July.
    5. Waad Bouaguel & Tagreed Alsulimani, 2022. "Understanding the Factors Influencing Consumers’ Intention toward Shifting to Solar Energy Technology for Residential Use in Saudi Arabia Using the Technology Acceptance Model," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Kablan, M. M., 2004. "Decision support for energy conservation promotion:: an analytic hierarchy process approach," Energy Policy, Elsevier, vol. 32(10), pages 1151-1158, July.
    7. Steffen Limmer, 2023. "Empirical Study of Stability and Fairness of Schemes for Benefit Distribution in Local Energy Communities," Energies, MDPI, vol. 16(4), pages 1-16, February.
    8. Lee, W. L. & Yik, F. W. H., 2002. "Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 73(2), pages 139-166, October.
    9. Anna Mularczyk & Iwona Zdonek & Marian Turek & Stanisław Tokarski, 2022. "Intentions to Use Prosumer Photovoltaic Technology in Poland," Energies, MDPI, vol. 15(17), pages 1-15, August.
    10. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    11. Thambiran, Tirusha & Diab, Roseanne D., 2011. "Air quality and climate change co-benefits for the industrial sector in Durban, South Africa," Energy Policy, Elsevier, vol. 39(10), pages 6658-6666, October.
    12. Emad Awada & Eyad Radwan & Suzan Abed & Akram Al-Mahrouk, 2024. "Economic Analysis and Design of Sustainable Solar Electric Vehicle Carport at Applied Science Private University in Jordan," Energies, MDPI, vol. 17(17), pages 1-20, August.
    13. Adam Kaizer & Tomasz Neumann, 2021. "The Model of Support for the Decision-Making Process, While Organizing Dredging Works in the Ports," Energies, MDPI, vol. 14(9), pages 1-15, May.
    14. Kablan, M.M, 2003. "Energy conservation projects implementation at Jordan’s industrial sector: a total quality management approach," Energy, Elsevier, vol. 28(15), pages 1533-1543.
    15. Alicja Lenarczyk & Marcin Jaskólski & Paweł Bućko, 2022. "The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy," Energies, MDPI, vol. 15(24), pages 1-21, December.
    16. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    17. Matthias Slonski & Tobias Schrag, 2019. "Linear Optimisation of a Settlement Towards the Energy-Plus House Standard," Energies, MDPI, vol. 12(2), pages 1-12, January.
    18. Syed Hammad Mian & Khaja Moiduddin & Hisham Alkhalefah & Mustufa Haider Abidi & Faraz Ahmed & Faraz Hussain Hashmi, 2023. "Mechanisms for Choosing PV Locations That Allow for the Most Sustainable Usage of Solar Energy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    19. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Optimal sampling plan for clean development mechanism energy efficiency lighting projects," Applied Energy, Elsevier, vol. 112(C), pages 1006-1015.
    20. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9385-:d:1509110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.