IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8854-d1497616.html
   My bibliography  Save this article

A Combined Experimental and Computational Study on the Effect of the Reactor Configuration and Operational Procedures on the Formation, Growth and Dissociation of Carbon Dioxide Hydrate

Author

Listed:
  • Chrysoula Tallarou

    (Institute of Geoenergy, Foundation for Research and Technology—Hellas, Building M1, University Campus, Akrotiri, 73100 Chania, Greece
    School of Mineral Resources Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 73100 Chania, Greece)

  • Anastasios Labropoulos

    (Institute of Geoenergy, Foundation for Research and Technology—Hellas, Building M1, University Campus, Akrotiri, 73100 Chania, Greece)

  • Stavros Stavropoulos

    (School of Mineral Resources Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 73100 Chania, Greece)

  • Nikos Pasadakis

    (School of Mineral Resources Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 73100 Chania, Greece)

  • Emmanuel Stamatakis

    (Institute of Geoenergy, Foundation for Research and Technology—Hellas, Building M1, University Campus, Akrotiri, 73100 Chania, Greece)

  • Spyros Bellas

    (Institute of Geoenergy, Foundation for Research and Technology—Hellas, Building M1, University Campus, Akrotiri, 73100 Chania, Greece)

  • Raoof Gholami

    (Department of Energy Resources, University of Stavanger, Kjell Arholms Gate 41, 4021 Stavanger, Norway)

  • Ioannis V. Yentekakis

    (Institute of Geoenergy, Foundation for Research and Technology—Hellas, Building M1, University Campus, Akrotiri, 73100 Chania, Greece
    School of Chemical and Environmental Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 73100 Chania, Greece)

Abstract

Clathrate hydrate-based technologies are considered promising and sustainable alternatives for the effective management of the climate change risks related to emissions of carbon dioxide produced by human activities. This work presents a combined experimental and computational investigation of the effects of the operational procedures and characteristics of the experimental configuration, on the phase diagrams of CO 2 -H 2 O systems and CO 2 hydrates’ formation, growth and dissociation conditions. The operational modes involved (i) the incremental (step-wise) temperature cycling and (ii) the continuous temperature cycling processes, in the framework of an isochoric pressure search method. Also, two different high-pressure PVT configurations were used, of which one encompassed a stirred tank reactor and the other incorporated an autoclave of constant volume with magnetic agitation. The experimental results implied a dependence of the subcooling degree, ( P , T ) conditions for hydrate formation and dissociation, and thermal stability of the hydrate phase on the applied temperature cycling mode and the technical features of the utilized PVT configuration. The experimental findings were complemented by a thermodynamic simulation model and other calculation approaches, with the aim to resolve the phase diagrams including the CO 2 dissolution over the entire range of the applied ( P , T ) conditions.

Suggested Citation

  • Chrysoula Tallarou & Anastasios Labropoulos & Stavros Stavropoulos & Nikos Pasadakis & Emmanuel Stamatakis & Spyros Bellas & Raoof Gholami & Ioannis V. Yentekakis, 2024. "A Combined Experimental and Computational Study on the Effect of the Reactor Configuration and Operational Procedures on the Formation, Growth and Dissociation of Carbon Dioxide Hydrate," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8854-:d:1497616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    2. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    2. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    3. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    4. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    5. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    6. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    7. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    8. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    9. Kan, Jing-Yu & Sun, Yi-Fei & Dong, Bao-Can & Yuan, Qing & Liu, Bei & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection," Energy, Elsevier, vol. 221(C).
    10. Seo, Young-ju & Park, Seongmin & Kang, Hyery & Ahn, Yun-Ho & Lim, Dongwook & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Ahn, Taewoong & Seo, Yongwon & Lee, Huen, 2016. "Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage," Applied Energy, Elsevier, vol. 178(C), pages 579-586.
    11. Thakre, Niraj & Jana, Amiya K., 2017. "Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation," Applied Energy, Elsevier, vol. 205(C), pages 749-760.
    12. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    14. Zhang, Qi & Wang, Yanfei, 2023. "Comparisons of different electrical heating assisted depressurization methods for developing the unconfined hydrate deposits in Shenhu area," Energy, Elsevier, vol. 269(C).
    15. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    16. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    17. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    18. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).
    19. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    20. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8854-:d:1497616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.