IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i1p426-d1312644.html
   My bibliography  Save this article

Mapping Renewable Energy among Antarctic Research Stations

Author

Listed:
  • Magnus de Witt

    (Alaska Center for Energy and Power, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775-5910, USA)

  • Changhyun Chung

    (Department of Future Technology Convergence, Korea Polar Research Institute, Songdomirae-ro 26, Incheon 21990, Republic of Korea)

  • Joohan Lee

    (Department of Future Technology Convergence, Korea Polar Research Institute, Songdomirae-ro 26, Incheon 21990, Republic of Korea)

Abstract

This paper presents an overview of current electricity generation and consumption patterns in the Antarctic. Based on both previously published and newly collected data, the paper describes the current status of renewable-energy use at research stations in the Antarctic. A more detailed view of electricity systems is also presented, demonstrating how different types of resources may be used and combined. The paper will serve as a guide to various renewable-energy generation technologies, highlighting well-established praxis, lessons learned, and potential ideas for improvement. Several renewable electricity generation technologies that have proven effective for use in the Antarctic environment are described. as well as those that are currently in use. Finally, the paper summarizes the major lessons learned to support future projects and close the knowledge gap. The use of renewable-energy sources has the potential to reduce research stations’ greenhouse gas emissions, making research in Antarctica more sustainable. The availability of high-quality energy is crucial for survival and to allow scientists to conduct meaningful research at research stations under harsh Antarctic conditions.

Suggested Citation

  • Magnus de Witt & Changhyun Chung & Joohan Lee, 2024. "Mapping Renewable Energy among Antarctic Research Stations," Sustainability, MDPI, vol. 16(1), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:426-:d:1312644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Obara, Shin’ya & morizane, Yuta & Morel, Jorge, 2013. "A study of small-scale energy networks of the Japanese Syowa Base in Antarctica by distributed engine generators," Applied Energy, Elsevier, vol. 111(C), pages 113-128.
    2. de Witt, Magnus & Stefánsson, Hlynur & Valfells, Ágúst & Larsen, Joan Nymand, 2021. "Energy resources and electricity generation in Arctic areas," Renewable Energy, Elsevier, vol. 169(C), pages 144-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    2. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    3. Babinec, Susan & Baring-Gould, Ian & Bender, Amy N. & Blair, Nate & Li, Xiangkun & Muehleisen, Ralph T. & Olis, Dan & Ovaitt, Silvana, 2024. "Techno-economic analysis of renewable energy generation at the South Pole," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    5. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    6. Magnus de Witt & Ágúst Valfells & Joan Nymand Larsen & Hlynur Stefánsson, 2022. "Simulation of Pathways toward Low-Carbon Electricity Generation in the Arctic," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    7. Vakili, Seyedvahid & Ölçer, Aykut I., 2023. "Are battery-powered vessels the best solution for the domestic ferry segment? Case study for the domestic ferry segment in the Philippines," Energy, Elsevier, vol. 282(C).
    8. Magnus de Witt & Hlynur Stefánsson & Ágúst Valfells & Joan Nymand Larsen, 2021. "Availability and Feasibility of Renewable Resources for Electricity Generation in the Arctic: The Cases of Longyearbyen, Maniitsoq, and Kotzebue," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    9. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    10. Miao Li & Yiran Feng & Maojun Zhou & Hailin Mu & Longxi Li & Yajun Wang, 2019. "Economic and Environmental Optimization for Distributed Energy System Integrated with District Energy Network," Energies, MDPI, vol. 12(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:426-:d:1312644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.