IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v193y2024ics1364032123011322.html
   My bibliography  Save this article

Techno-economic analysis of renewable energy generation at the South Pole

Author

Listed:
  • Babinec, Susan
  • Baring-Gould, Ian
  • Bender, Amy N.
  • Blair, Nate
  • Li, Xiangkun
  • Muehleisen, Ralph T.
  • Olis, Dan
  • Ovaitt, Silvana

Abstract

Transitioning from fossil-fuel power generation to renewable energy generation and energy storage in remote locations has the potential to reduce both carbon emissions and cost. This study presents a techno-economic analysis for implementation of a hybrid renewable energy system at the South Pole in Antarctica, which currently hosts several high-energy physics experiments with nontrivial power needs. A tailored model of resource availability and economics for solar photovoltaics, wind turbine generators, lithium-ion energy storage, and long-duration energy storage at this site is explored in different combinations with and without existing diesel energy generation. The Renewable Energy Integration and Optimization (REopt) platform is used to determine the optimal system component sizing and the associated system economics and environmental benefit. We find that the least-cost system includes all three energy generation sources and lithium-ion energy storage. For an example steady-state load of 170 kW, this hybrid system includes 180 kW-DC of photovoltaic panels, 570 kW of wind turbines, and a 3.4 MWh lithium-ion battery energy storage system. This system reduces diesel consumption by 95% compared to an all-diesel configuration, resulting in approximately 1200 metric tons of carbon footprint avoided annually. Over the course of a 15-year analysis period the reduced diesel usage leads to a net savings of 57 million United States dollars, with a time to payback of approximately two years. All the scenarios modeled show that the transition to renewables is highly cost effective under the unique economics and constraints of this extremely remote site.

Suggested Citation

  • Babinec, Susan & Baring-Gould, Ian & Bender, Amy N. & Blair, Nate & Li, Xiangkun & Muehleisen, Ralph T. & Olis, Dan & Ovaitt, Silvana, 2024. "Techno-economic analysis of renewable energy generation at the South Pole," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:rensus:v:193:y:2024:i:c:s1364032123011322
    DOI: 10.1016/j.rser.2023.114274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123011322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boccaletti, Chiara & Di Felice, Pietro & Santini, Ezio, 2014. "Integration of renewable power systems in an Antarctic Research Station," Renewable Energy, Elsevier, vol. 62(C), pages 582-591.
    2. de Witt, Magnus & Stefánsson, Hlynur & Valfells, Ágúst & Larsen, Joan Nymand, 2021. "Energy resources and electricity generation in Arctic areas," Renewable Energy, Elsevier, vol. 169(C), pages 144-156.
    3. Olivier, Jürgen R. & Harms, Thomas M. & Esterhuyse, Daniël J., 2008. "Technical and economic evaluation of the utilization of solar energy at South Africa's SANAE IV base in Antarctica," Renewable Energy, Elsevier, vol. 33(5), pages 1073-1084.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Christo, Tiago Malavazi & Fardin, Jussara Farias & Simonetti, Domingos Sávio Lyrio & Encarnação, Lucas Frizera & de Alvarez, Cristina Engel, 2016. "Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case," Renewable Energy, Elsevier, vol. 88(C), pages 236-246.
    2. Obydenkova, Svetlana V. & Pearce, Joshua M., 2016. "Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes," Renewable Energy, Elsevier, vol. 89(C), pages 253-267.
    3. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    4. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    5. Magnus de Witt & Hlynur Stefánsson & Ágúst Valfells & Joan Nymand Larsen, 2021. "Availability and Feasibility of Renewable Resources for Electricity Generation in the Arctic: The Cases of Longyearbyen, Maniitsoq, and Kotzebue," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    6. Shixiong Fang & Xinyi Chen & Kanjian Zhang & Haikun Wei & Jian Ge, 2020. "The Antarctic Astronomical Observations Intelligent Support Equipment “Dome A” Site-Testing Observatory: Electric Power Generation and Control Systems," Energies, MDPI, vol. 13(17), pages 1-17, August.
    7. Okoye, Chiemeka Onyeka & Oranekwu-Okoye, Blessing Chioma, 2018. "Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2537-2547.
    8. Magnus de Witt & Changhyun Chung & Joohan Lee, 2024. "Mapping Renewable Energy among Antarctic Research Stations," Sustainability, MDPI, vol. 16(1), pages 1-15, January.
    9. Magnus de Witt & Ágúst Valfells & Joan Nymand Larsen & Hlynur Stefánsson, 2022. "Simulation of Pathways toward Low-Carbon Electricity Generation in the Arctic," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    10. Tin, Tina & Sovacool, Benjamin K. & Blake, David & Magill, Peter & El Naggar, Saad & Lidstrom, Sven & Ishizawa, Kenji & Berte, Johan, 2010. "Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica," Renewable Energy, Elsevier, vol. 35(8), pages 1715-1723.
    11. Vakili, Seyedvahid & Ölçer, Aykut I., 2023. "Are battery-powered vessels the best solution for the domestic ferry segment? Case study for the domestic ferry segment in the Philippines," Energy, Elsevier, vol. 282(C).
    12. Zhou, Xinping & Yang, Jiakuan & Wang, Fen & Xiao, Bo, 2009. "Economic analysis of power generation from floating solar chimney power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 736-749, May.
    13. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    14. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    15. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2016. "Wind energy potential of Vesleskarvet and the feasibility of meeting the South African׳s SANAE IV energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 226-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:193:y:2024:i:c:s1364032123011322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.