IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8715-d1495018.html
   My bibliography  Save this article

Analysis and Suppression of Oscillations in Doubly Fed Variable Speed Pumped Storage Hydropower Plants Considering the Water Conveyance System

Author

Listed:
  • Yuzhe Chen

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Feng Wu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Linjun Shi

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Yang Li

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Xu Guo

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Peng Qi

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

Abstract

The doubly fed variable speed pumped storage (DFVSPS) system is a hydraulically, mechanically, and electrically coupled system, and the characteristics of the components from the water conveyance system to the transmission line need to be fully considered in the oscillation analysis. Hence, the model of the water conveyance system is included to investigate the oscillation characteristics of the DFVSPS connecting to the grid via a series-compensated line. A small-signal state-space model of the DFVSPS system in the generation mode is first established. The oscillation characteristics of the DFVSPS are studied, and the dominant state variables for each oscillation mode are identified. The impact of system parameters on oscillations is further studied, and simulations are carried out to validate the accuracy of the model. The results indicate the oscillation mode of the DFVSPS comprises the electrical sub-synchronous oscillation (SSO) mode and the hydraulically, mechanically coupled low-frequency mechanical oscillation modes. When the series compensation level is high, the SSO becomes divergent, and the system is more likely to be unstable. Optimizing the rotor-side control parameters and the governor control parameters, sub-synchronous and low-frequency oscillations could be effectively suppressed, respectively. This study provides reference suggestions for the development and use of the future DFVSPS system.

Suggested Citation

  • Yuzhe Chen & Feng Wu & Linjun Shi & Yang Li & Xu Guo & Peng Qi, 2024. "Analysis and Suppression of Oscillations in Doubly Fed Variable Speed Pumped Storage Hydropower Plants Considering the Water Conveyance System," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8715-:d:1495018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Chunyang & Yu, Xiangyang & Nan, Haipeng & Men, Chuangshe & Zhao, Peiyu & Cai, Qingsen & Fu, Jianing, 2021. "Stability and dynamic analysis of doubly-fed variable speed pump turbine governing system based on Hopf bifurcation theory," Renewable Energy, Elsevier, vol. 175(C), pages 568-579.
    2. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    3. Yunfei Wu & Jianfeng Liu & Jian Zhou, 2022. "The Strategy of Considering the Participation of Doubly-Fed Pumped-Storage Units in Power Grid Frequency Regulation," Energies, MDPI, vol. 15(6), pages 1-16, March.
    4. Yi Liu & Xiaodong Yu & Xinlei Guo & Wenlong Zhao & Sheng Chen, 2023. "Operational Stability of Hydropower Plant with Upstream and Downstream Surge Chambers during Small Load Disturbance," Energies, MDPI, vol. 16(11), pages 1-13, June.
    5. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    2. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    3. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    4. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    5. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    6. Riepin, Iegor & Möbius, Thomas & Müsgens, Felix, 2021. "Modelling uncertainty in coupled electricity and gas systems—Is it worth the effort?," Applied Energy, Elsevier, vol. 285(C).
    7. Thakur, Jagruti & Hesamzadeh, Mohammad Reza & Date, Paresh & Bunn, Derek, 2023. "Pricing and hedging wind power prediction risk with binary option contracts," Energy Economics, Elsevier, vol. 126(C).
    8. Jun Dong & Anyuan Fu & Yao Liu & Shilin Nie & Peiwen Yang & Linpeng Nie, 2019. "Two-Stage Optimization Model for Two-Side Daily Reserve Capacity of a Power System Considering Demand Response and Wind Power Consumption," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    9. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    10. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Chen, Wei & Qin, Haoxuan & Zhu, Qing & Bai, Jianshu & Xie, Ningning & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2024. "Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 221(C).
    12. Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
    13. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    14. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    15. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    16. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    17. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Jia, Zebin, 2024. "Assessing hydropower capability for accommodating variable renewable energy considering peak shaving of multiple power grids," Energy, Elsevier, vol. 305(C).
    18. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    19. Ma, Chao & Liu, Lu, 2022. "Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements," Renewable Energy, Elsevier, vol. 198(C), pages 637-653.
    20. Gao, Chunyang & Yu, Xiangyang & Nan, Haipeng & Guo, Pengcheng & Fan, Guoliang & Meng, Zhijie & Ge, Ye & Cai, Qingsen, 2024. "Rotating speed pulling-back control and adaptive strategy of doubly-fed variable speed pumped storage unit," Renewable Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8715-:d:1495018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.