IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8704-d1494791.html
   My bibliography  Save this article

Microplastics and Nanoplastics as Environmental Contaminants of Emerging Concern: Potential Hazards for Human Health

Author

Listed:
  • Rita Khanna

    (School of Materials Science and Engineering (Ret.), The University of New South Wales, Sydney, NSW 2052, Australia)

  • Abhilash Chandra

    (University of Adelaide-Flinders University, Adelaide, SA 5005, Australia
    Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia)

  • Shaundeep Sen

    (Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
    Concord Repatriation General Hospital, Concord, Sydney, NSW 2139, Australia)

  • Yuri Konyukhov

    (Department of Enrichment and Processing of Minerals and Technogenic Raw Materials, National University of Science and Technology “MISIS”, Moscow 119049, Russia)

  • Erick Fuentes

    (Concord Cancer Centre, Concord Repatriation General Hospital, Concord, Sydney, NSW 2139, Australia)

  • Igor Burmistrov

    (Engineering Centre, Plekhanov Russian University of Economics, Moscow 117997, Russia)

  • Maksim Kravchenko

    (Moscow Power Engineering Institute, National Research University, Moscow 111250, Russia)

Abstract

With nearly 40% of the total plastics produced being used for packaging, up to five trillion plastic bags are consumed in the world annually. The inadequate disposal of plastic waste and its persistence has become a serious challenge/risk to the environment, health, and well-being of living creatures, including humans. The natural degradation of plastics is extremely slow; large pieces of plastic may break down into microplastics (MPs) (1 μm–5 mm) or nanoplastics (NPs) (<1000 nm) after protracted physical, chemical, and/or biological degradations. A brief overview of the transport of micro- and nanoplastics in the aquatic, terrestrial, and atmospheric environments is presented. Details are provided on the exposure routes for these waste materials and their entry into humans and other biota through ingestion, inhalation, and dermal contact. The greatest concern is the cumulative impact of the heterogeneous secondary MPs and NPs on planetary and human health. Inhaled MPs and NPs have been shown to affect the upper respiratory tract, lower respiratory tract, and alveoli; prolonged exposure can lead to chronic inflammatory changes and systemic disease. These can also lead to autoimmune diseases and other chronic health conditions, including atherosclerosis and malignancy. Sustainable mitigation strategies to reduce the impact of MPs/NPs include source reduction, material substitution, filtration and purification, transformation of plastic waste into value-added materials, technological innovations, etc. Multidisciplinary collaborations across the fields of medicine, public health, environmental science, economics, and policy are required to help limit the detrimental effects of widespread MPs and NPs in the environment.

Suggested Citation

  • Rita Khanna & Abhilash Chandra & Shaundeep Sen & Yuri Konyukhov & Erick Fuentes & Igor Burmistrov & Maksim Kravchenko, 2024. "Microplastics and Nanoplastics as Environmental Contaminants of Emerging Concern: Potential Hazards for Human Health," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8704-:d:1494791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    2. Richard J. Kish, 2018. "Using Legislation To Reduce One†Time Plastic Bag Usage," Economic Affairs, Wiley Blackwell, vol. 38(2), pages 224-239, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    2. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    3. Kawther Saeedi & Anna Visvizi & Dimah Alahmadi & Amal Babour, 2023. "Smart Cities and Households’ Recyclable Waste Management: The Case of Jeddah," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    4. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.
    5. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).
    6. Amna Farrukh & Aymen Sajjad, 2024. "Investigating sustainability tensions and resolution strategies in the plastic food packaging industry—A paradox theory approach," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 2868-2889, May.
    7. Evangelos Danopoulos & Maureen Twiddy & Jeanette M Rotchell, 2020. "Microplastic contamination of drinking water: A systematic review," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    8. Jiang, Yuchen & Li, Xianglin & Li, Chao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2022. "Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics," Renewable Energy, Elsevier, vol. 200(C), pages 476-491.
    9. R. R. M. K. P. Ranatunga & Dilhara Wijetunge & W. V. P. H. Ranaweera & Chin-Chang Hung & Shang-Yin Vanson Liu & Qamar Schuyler & T. J. Lawson & Britta Denise Hardesty, 2023. "Ranking Sri Lanka among the World’s Top Mismanaged Waste Polluters: Does Model Data Change the Story?," Sustainability, MDPI, vol. 15(3), pages 1-12, February.
    10. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Wrona, Jan & Wencel, Kinga, 2024. "Thermal decomposition of polyolefins under different oxygen content. Composition of products and thermal effects," Energy, Elsevier, vol. 295(C).
    11. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    12. Cristina Aracil & Ángel L. Villanueva Perales & Jacopo Giuntoli & Jorge Cristóbal & Pedro Haro, 2023. "The Role of Renewable-Derived Plastics in the Analysis of Waste Management Schemes: A Time-Dependent Carbon Cycle Assessment," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    13. Jan Cudzik & Klaudia Kropisz, 2024. "Assessment of Utilizing Hard-to-Recycle Plastic Waste from the Packaging Sector in Architectural Design—Case Study for Experimental Building Material," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
    14. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    15. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    16. Isabella Gambino & Francesco Bagordo & Tiziana Grassi & Alessandra Panico & Antonella De Donno, 2022. "Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    17. Trieu Nguyen, Uyen Nhat & Van Lam, Do & Shim, Hyung Cheoul & Lee, Seung-Mo, 2021. "Leaf-derived porous carbon synthesized by carbothermic reduction," Renewable Energy, Elsevier, vol. 171(C), pages 116-123.
    18. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    19. Emilia Jankowska & Miranda R. Gorman & Chad J. Frischmann, 2022. "Transforming the Plastic Production System Presents Opportunities to Tackle the Climate Crisis," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    20. Tobias Börger & Nick Hanley & Robert J. Johnston & Keila Meginnis & Tom Ndebele & Ghamz E. Ali Siyal & Frans de Vries, 2024. "Equity preferences and abatement cost sharing in international environmental agreements," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 416-441, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8704-:d:1494791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.