IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics036054422400759x.html
   My bibliography  Save this article

Thermal decomposition of polyolefins under different oxygen content. Composition of products and thermal effects

Author

Listed:
  • Berkowicz-Płatek, Gabriela
  • Żukowski, Witold
  • Wrona, Jan
  • Wencel, Kinga

Abstract

The thermal decomposition of polyethylene and polypropylene was studied under conditions of different oxygen contents in the carrier gas in the temperature range of 200–600 °C. The effect of adding an oxidizing agent to the carrier gas was studied at (O2/N2)mol ratios of 0/100; 1/99; 2/98; 4/96; 6/94; 10/90; 21/79. Combined TG-FTIR and TG-DSC techniques were used in the studies. Based on FTIR spectra, a quantitative and qualitative analysis of the process gaseous products was performed. The study showed that the thermal degradation of polyolefins can lead to mixtures of saturated and unsaturated hydrocarbons, which are an attractive substitute for natural gas for hydrogen production. The molar ratio of saturated/unsaturated hydrocarbons for PE and PP is 3/2. The composition of the gas product mixture as well as the heat balance of the process can be controlled by adjusting the oxygen concentration in the carrier gas. With a content of 3%O2 in the carrier gas for PE and 4%O2 for PP, autothermal conditions of the thermal processing of polyolefins are achieved. The addition of oxygen accelerates the transformation of polyolefins and thus lowers the optimal process temperature. The CxHyO and CO mixture, coexisting with the hydrocarbon mixture in some process variants, can be converted by the water shift reaction into a mixture of H2 and CO2.

Suggested Citation

  • Berkowicz-Płatek, Gabriela & Żukowski, Witold & Wrona, Jan & Wencel, Kinga, 2024. "Thermal decomposition of polyolefins under different oxygen content. Composition of products and thermal effects," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s036054422400759x
    DOI: 10.1016/j.energy.2024.130987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400759X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Wen & Su, Jing & Zhang, Xiangkun & Li, Tan & Wang, Cong & Yuan, Xiangzhou & Wang, Kaige, 2023. "Investigating kinetic behavior and reaction mechanism on autothermal pyrolysis of polyethylene plastic," Energy, Elsevier, vol. 269(C).
    2. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    3. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).
    2. Żukowski, Witold & Berkowicz-Płatek, Gabriela & Wrona, Jan, 2024. "Thermal decomposition of polyolefins under different oxygen content. Kinetic parameters evaluation," Energy, Elsevier, vol. 293(C).
    3. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    5. Evangelos Danopoulos & Maureen Twiddy & Jeanette M Rotchell, 2020. "Microplastic contamination of drinking water: A systematic review," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    6. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    7. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    8. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    9. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    10. Trieu Nguyen, Uyen Nhat & Van Lam, Do & Shim, Hyung Cheoul & Lee, Seung-Mo, 2021. "Leaf-derived porous carbon synthesized by carbothermic reduction," Renewable Energy, Elsevier, vol. 171(C), pages 116-123.
    11. Tobias Börger & Nick Hanley & Robert J. Johnston & Keila Meginnis & Tom Ndebele & Ghamz E. Ali Siyal & Frans de Vries, 2024. "Equity preferences and abatement cost sharing in international environmental agreements," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 416-441, January.
    12. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    13. Andrea Ballatore & Teun Johannes Verhagen & Zhije Li & Stefano Cucurachi, 2022. "This city is not a bin: Crowdmapping the distribution of urban litter," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 197-212, February.
    14. Mehrab Nodehi & Vahid Mohammad Taghvaee, 2022. "Applying Circular Economy to Construction Industry through Use of Waste Materials: A Review of Supplementary Cementitious Materials, Plastics, and Ceramics," Circular Economy and Sustainability, Springer, vol. 2(3), pages 987-1020, September.
    15. Aditya Chidepatil & Prabhleen Bindra & Devyani Kulkarni & Mustafa Qazi & Meghana Kshirsagar & Krishnaswamy Sankaran, 2020. "From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste?," Administrative Sciences, MDPI, vol. 10(2), pages 1-16, April.
    16. Adina-Iuliana Jigani & Camelia Delcea & Corina Ioanăș, 2020. "Consumers’ Behavior in Selective Waste Collection: A Case Study Regarding the Determinants from Romania," Sustainability, MDPI, vol. 12(16), pages 1-35, August.
    17. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Yanxu Zhang & Peipei Wu & Ruochong Xu & Xuantong Wang & Lili Lei & Amina T. Schartup & Yiming Peng & Qiaotong Pang & Xinle Wang & Lei Mai & Ruwei Wang & Huan Liu & Xiaotong Wang & Arjen Luijendijk & E, 2023. "Plastic waste discharge to the global ocean constrained by seawater observations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Mutuku, Judith & Tocock, Mark & Yanotti, Maria & Tinch, Dugald & Hatton MacDonald, Darla, 2024. "Public perceptions of the value of reducing marine plastics in Australian waters," Ecological Economics, Elsevier, vol. 217(C).
    20. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s036054422400759x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.