IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8589-d1491691.html
   My bibliography  Save this article

Socio-Eco-Efficiency in Agroforestry Production Systems: A Systematic Review

Author

Listed:
  • Salvador Luna-Vargas

    (Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Proy SIP 20242238, 30 de Junio de 1520 s/n, La Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico
    Sustainable Tourism Department, Universidad del Caribe, Tabachines, Cancun 77528, Mexico)

  • Mario del Roble Pensado-Leglise

    (Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Proy SIP 20242238, 30 de Junio de 1520 s/n, La Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico)

  • Carlos Rosano-Peña

    (Administration Department, Faculty of Administration, Accounting, Economics and Public Policy Management, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasilia 70910-900, Brazil)

  • André Luiz Marques-Serrano

    (Department of Production Engineering, Faculty of Technology, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasilia 70910-900, Brazil)

Abstract

Eco-efficiency has emerged to reduce environmental impacts and improve competitiveness in various industries, including agriculture. However, the application of eco-efficiency in agroforestry, incorporating social variables, is a relatively recent development. This study conducted a review of the scientific literature on eco-efficiency to address key questions. The analysis utilized the Web of Science Core Collection database, focusing on categories such as sustainable eco-efficiency, agricultural eco-efficiency, forestry eco-efficiency, and socio-eco-efficiency. The objective of this work is to offer a bibliometric analysis on socio-eco-efficiency in agroforestry production systems. The results revealed three stages in eco-efficiency research: an initial stage with low publication numbers, a second stage marked by significant growth and a focus on sustainable development, and a third stage characterized by rapid growth and increasing interest. In the field of agricultural eco-efficiency, there has been a recent increase in publications, reflecting the growing importance of agriculture in eco-efficiency analyses. China emerged as the leading country in terms of scientific advancements in eco-efficiency. The study also identified key research areas and institutions contributing to the literature on agricultural eco-efficiency. Overall, the findings highlight the expanding interest and future potential of socio-eco-efficiency in agroforestry research.

Suggested Citation

  • Salvador Luna-Vargas & Mario del Roble Pensado-Leglise & Carlos Rosano-Peña & André Luiz Marques-Serrano, 2024. "Socio-Eco-Efficiency in Agroforestry Production Systems: A Systematic Review," Sustainability, MDPI, vol. 16(19), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8589-:d:1491691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    2. Antoci, Angelo & Borghesi, Simone & Galeotti, Marcello & Russu, Paolo, 2022. "Maladaptation to environmental degradation and the interplay between negative and positive externalities," European Economic Review, Elsevier, vol. 143(C).
    3. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    6. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    7. Daniela Kolsch & Peter Saling & Andreas Kicherer & Anahi Grosse-Sommer & Isabell Schmidt, 2008. "How to measure social impacts? A socio-eco-efficiency analysis by the SEEBALANCE® method," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 11(1), pages 1-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    2. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    3. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    4. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    5. Xiang Ji & Jie Wu & Qingyuan Zhu & Jiasen Sun, 2019. "Using a hybrid heterogeneous DEA method to benchmark China’s sustainable urbanization: an empirical study," Annals of Operations Research, Springer, vol. 278(1), pages 281-335, July.
    6. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    7. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    8. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    9. Yongyi Cheng & Tianyuan Shao & Huilin Lai & Manhong Shen & Yi Li, 2019. "Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    10. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    11. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    12. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    13. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    14. Xiaohong Liu & Qingyuan Zhu & Junfei Chu & Xiang Ji & Xingchen Li, 2019. "Environmental Performance and Benchmarking Information for Coal-Fired Power Plants in China: A DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1287-1302, December.
    15. Xiaoqing Wang & Qiuming Wu & Salman Majeed & Donghao Sun, 2018. "Fujian’s Industrial Eco-Efficiency: Evaluation Based on SBM and the Empirical Analysis of lnfluencing Factors," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    16. Pyoungsoo Lee & You-Jin Park, 2017. "Eco-Efficiency Evaluation Considering Environmental Stringency," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    17. Hashem Omrani & Meisam Shamsi & Ali Emrouznejad, 2023. "Evaluating sustainable efficiency of decision-making units considering undesirable outputs: an application to airline using integrated multi-objective DEA-TOPSIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5899-5930, July.
    18. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    19. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    20. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8589-:d:1491691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.