IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8447-d1487776.html
   My bibliography  Save this article

Bayesian Vector Autoregression Analysis of Chinese Coal-Fired Thermal Power Plants

Author

Listed:
  • Ning Zhang

    (Department of Economics, College of Economics, Jinan University, Guangzhou 510632, China
    Institute of Blue and Green Development, Shandong University, Weihai 264200, China)

  • Haisheng Li

    (Institute of Finance, College of Economics, Jinan University, Guangzhou 510632, China)

Abstract

Considering the dataset of information related to Chinese coal-fired thermal power plants during the 2005–2017 period, we initially investigated the orthogonalized response of the carbon emission to energy consumption and power generation by using Bayesian vector autoregressions and feedback solutions for impulse control technology. The results showed that the effects of energy consumption and power generation on carbon emissions were significant. The Chinese government has launched a program aimed at curbing carbon emission peaks and neutralizing or decreasing carbon emissions. The causal relationship concludes that China still needs further investment in emission abatement, improvement related to the level of openness to the outside world, and the strengthening of the construction of green zones for industrial transfer to mitigate carbon emissions.

Suggested Citation

  • Ning Zhang & Haisheng Li, 2024. "Bayesian Vector Autoregression Analysis of Chinese Coal-Fired Thermal Power Plants," Sustainability, MDPI, vol. 16(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8447-:d:1487776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gale Boyd & George Tolley & Joseph Pang, 2002. "Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(1), pages 29-43, September.
    2. Ryo Fujikura & Shinji Kaneko & Hirofumi Nakayama & Naoya Sawazu, 2006. "Coverage and reliability of Chinese statistics regarding sulfur dioxide emissions during the late 1990s," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 415-434, December.
    3. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019. "Priors for the Long Run," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
    4. Qiao, Sen & Dang, Yi Jing & Ren, Zheng Yu & Zhang, Kai Quan, 2023. "The dynamic spillovers among carbon, fossil energy and electricity markets based on a TVP-VAR-SV method," Energy, Elsevier, vol. 266(C).
    5. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    6. Boyd, Gale A. & McClelland, John D., 1999. "The Impact of Environmental Constraints on Productivity Improvement in Integrated Paper Plants," Journal of Environmental Economics and Management, Elsevier, vol. 38(2), pages 121-142, September.
    7. M. Murty & Surender Kumar & Kishore Dhavala, 2007. "Measuring environmental efficiency of industry: a case study of thermal power generation in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 31-50, September.
    8. Shunsuke Managi & SJames J. Opaluch & Di Jin & Thomas A. Grigalunas, 2005. "Environmental Regulations and Technological Change in the Offshore Oil and Gas Industry," Land Economics, University of Wisconsin Press, vol. 81(2).
    9. A Hadi-Vencheh & A Esmaeilzadeh, 2013. "A new super-efficiency model in the presence of negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 396-401, March.
    10. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    11. Bruce Domazlicky & William Weber, 2004. "Does Environmental Protection Lead to Slower Productivity Growth in the Chemical Industry?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 301-324, July.
    12. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    13. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    14. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    15. Khezri, Mohsen & Heshmati, Almas & Khodaei, Mehdi, 2022. "Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions," Applied Energy, Elsevier, vol. 306(PB).
    16. Ryo Fujikura & Shinji Kaneko & Hirofumi Nakayama & Naoya Sawazu, 2006. "Coverage and reliability of Chinese statistics regarding sulfur dioxide emissions during the late 1990s," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 415-434, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    2. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    3. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    4. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    5. Johan Brolund & Robert Lundmark, 2017. "Effect of Environmental Regulation Stringency on the Pulp and Paper Industry," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    6. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    7. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun & Managi, Shunsuke, 2015. "The enhanced Russell-based directional distance measure with undesirable outputs: Numerical example considering CO2 emissions," Omega, Elsevier, vol. 53(C), pages 30-40.
    8. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    9. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    10. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    11. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    12. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Toloo, Mehdi & Ghazizadeh, Mohammad Sadegh, 2016. "Eco-efficiency considering the issue of heterogeneity among power plants," Energy, Elsevier, vol. 111(C), pages 722-735.
    13. Fleishman, Rachel & Alexander, Rob & Bretschneider, Stuart & Popp, David, 2009. "Does regulation stimulate productivity? The effect of air quality policies on the efficiency of US power plants," Energy Policy, Elsevier, vol. 37(11), pages 4574-4582, November.
    14. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    15. Ying Li & Yung‐ho Chiu & Tai‐Yu Lin & Hongyi Cen & Yabin Liu, 2021. "Evaluation of natural disaster treatment efficiency in 27 Chinese provinces," Natural Resources Forum, Blackwell Publishing, vol. 45(3), pages 256-288, August.
    16. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    17. Managi, Shunsuke & Kaneko, Shinji, 2009. "Environmental performance and returns to pollution abatement in China," Ecological Economics, Elsevier, vol. 68(6), pages 1643-1651, April.
    18. Martini, Gianmaria & Manello, Alessandro & Scotti, Davide, 2013. "The influence of fleet mix, ownership and LCCs on airports’ technical/environmental efficiency," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 37-52.
    19. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    20. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.

    More about this item

    Keywords

    energy; growth; emissions;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8447-:d:1487776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.