IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8083-d1479006.html
   My bibliography  Save this article

Ultra-High-Voltage Construction Projects and Total Factor Energy Efficiency: Empirical Evidence on Cross-Regional Power Dispatch in China

Author

Listed:
  • Yubao Wang

    (School of Economics and Finance, Xi’an Jiaotong University, Xi’an 710061, China
    School of Economics and Management, Xinjiang University, Urumqi 830046, China)

  • Junjie Zhen

    (School of Economics and Finance, Xi’an Jiaotong University, Xi’an 710061, China)

  • Huiyuan Pan

    (School of Economics and Finance, Xi’an Jiaotong University, Xi’an 710061, China)

Abstract

Optimizing cross-regional energy dispatch is crucial for addressing regional energy resource imbalances and significantly enhancing energy utilization efficiency. This study aims to analyze the potential impact of China’s ultra-high-voltage (UHV) construction on firms’ total factor energy efficiency and provide empirical evidence supporting the role of cross-regional energy dispatch in improving firms’ energy efficiency. The construction of UHV infrastructure has become a vital part of China’s “New Infrastructure” projects, presenting a “Chinese solution” to the global challenge of regional energy resource mismatches. This study employs an enhanced two-step stochastic frontier method to quantify firms’ total factor energy efficiency and utilizes a difference-in-differences model to evaluate the impact of inter-regional electricity dispatch on this efficiency. The empirical analysis results indicate that UHV construction projects increase the total factor energy efficiency of regional firms by an average of 0.45%, which significantly contributes to firms’ total factor productivity. This conclusion remains valid after a series of robustness tests. Furthermore, the heterogeneity analysis results indicate that the UHV construction project increases the total factor energy efficiency of non-energy-intensive industries by 0.49%, and significantly enhances the total factor energy efficiency of the manufacturing industry by 0.94%. However, it has no significant effect on energy-intensive industries or non-manufacturing enterprises. Additionally, the mechanism analysis shows that UHV construction projects affect total factor energy efficiency through three pathways: industrial structure adjustment, urban innovation, and clean energy transition. This study offers insights for addressing regional energy spatial mismatches and provides policy recommendations for developing a new energy system aligned with regional needs.

Suggested Citation

  • Yubao Wang & Junjie Zhen & Huiyuan Pan, 2024. "Ultra-High-Voltage Construction Projects and Total Factor Energy Efficiency: Empirical Evidence on Cross-Regional Power Dispatch in China," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8083-:d:1479006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    2. Lv, Chengchao & Shao, Changhua & Lee, Chien-Chiang, 2021. "Green technology innovation and financial development: Do environmental regulation and innovation output matter?," Energy Economics, Elsevier, vol. 98(C).
    3. Wang, Hui & Zhang, Yunyun & Lin, Weifen & Wei, Wendong, 2023. "Transregional electricity transmission and carbon emissions: Evidence from ultra-high voltage transmission projects in China," Energy Economics, Elsevier, vol. 123(C).
    4. Acemoglu, Daron & Gancia, Gino & Zilibotti, Fabrizio, 2012. "Competing engines of growth: Innovation and standardization," Journal of Economic Theory, Elsevier, vol. 147(2), pages 570-601.3.
    5. Filippini, Massimo & Geissmann, Thomas & Karplus, Valerie J. & Zhang, Da, 2020. "The productivity impacts of energy efficiency programs in developing countries: Evidence from iron and steel firms in China," China Economic Review, Elsevier, vol. 59(C).
    6. Jiang, Tangyang & Cao, Chi & Lei, Leyuan & Hou, Jie & Yu, Yang & Jahanger, Atif, 2023. "Temporal and spatial patterns, efficiency losses and impact factors of energy mismatch in China under environmental constraints," Energy, Elsevier, vol. 282(C).
    7. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    8. Gai, Zhiqiang & Guo, Yunxia & Hao, Yu, 2022. "Can internet development help break the resource curse? Evidence from China," Resources Policy, Elsevier, vol. 75(C).
    9. Nie, Yan & Zhang, Guoxing & Duan, Hongbo, 2020. "An interconnected panorama of future cross-regional power grid: A complex network approach," Resources Policy, Elsevier, vol. 67(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Does natural resources matter for sustainable energy development in China: The role of technological progress," Resources Policy, Elsevier, vol. 79(C).
    2. Qin, Quande & Yu, Ying & Liu, Yuan & Zhou, Jianqing & Chen, Xiude, 2023. "Industrial agglomeration and energy efficiency: A new perspective from market integration," Energy Policy, Elsevier, vol. 183(C).
    3. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    4. Huang, Xinpeng & Meng, Fanshi, 2023. "Digital finance mitigation of ' resource curse ' effect: Evidence from resource-based cities in China," Resources Policy, Elsevier, vol. 83(C).
    5. Ku-Hsieh Chen & Jen-Chi Cheng & Joe-Ming Lee & Liou-Yuan Li & Sheng-Yu Peng, 2020. "Energy Efficiency: Indicator, Estimation, and a New Idea," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    6. Zhang, H. & Fan, L.W. & Zhou, P., 2020. "Handling heterogeneity in frontier modeling of city-level energy efficiency: The case of China," Applied Energy, Elsevier, vol. 279(C).
    7. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    8. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    9. Shi Yin & Yuanyuan Yu & Nan Zhang, 2024. "The Effect of Digital Green Strategic Orientation On Digital Green Innovation Performance: From the Perspective of Digital Green Business Model Innovation," SAGE Open, , vol. 14(2), pages 21582440241, June.
    10. Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    11. Yunyao Li & Yanji Ma, 2022. "Research on Industrial Innovation Efficiency and the Influencing Factors of the Old Industrial Base Based on the Lock-In Effect, a Case Study of Jilin Province, China," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    12. Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Polygon generation and video-to-video translation for time-series prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 261-279, January.
    13. Nordin, Nur Naddia & Nordin, Nur Haiza, 2016. "Determinants of Innovation in Developing Countries: A Panel Generalized Method of Moments Analysis," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 50(2), pages 93-105.
    14. Daron Acemoglu & Gino Gancia & Fabrizio Zilibotti, 2015. "Offshoring and Directed Technical Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 84-122, July.
    15. Curzi, Daniele & Raimondi, Valentina & Olper, Alessandro, 2013. "Quality Upgrading, Competition and Trade Policy: Evidence from the Agri-Food Sector," 2013: Productivity and Its Impacts on Global Trade, June 2-4, 2013. Seville, Spain 152386, International Agricultural Trade Research Consortium.
    16. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    17. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    18. Song, Xiaoling & Yao, Yumeng & Wu, Xueke, 2023. "Digital finance, technological innovation, and carbon dioxide emissions," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 482-494.
    19. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    20. Alcalá, Francisco & Solaz, Marta, 2018. "International Relocation of Production and Growth," CEPR Discussion Papers 13422, C.E.P.R. Discussion Papers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8083-:d:1479006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.