IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p7906-d1475274.html
   My bibliography  Save this article

A Hierarchical Analysis Method for Evaluating the Risk Factors of Pile Foundation Construction for Offshore Wind Power

Author

Listed:
  • Qiang Zhang

    (Powerchina Huadong Engineering Co., Ltd., Powerchina Zhejiang Huadong Engineering Consulting Co., Ltd., Hangzhou 311122, China)

  • Hui Huang

    (Powerchina Huadong Engineering Co., Ltd., Powerchina Zhejiang Huadong Engineering Consulting Co., Ltd., Hangzhou 311122, China)

  • Hao Xu

    (Powerchina Huadong Engineering Co., Ltd., Powerchina Zhejiang Huadong Engineering Consulting Co., Ltd., Hangzhou 311122, China)

  • Zhenming Li

    (College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Xinjiao Tian

    (College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Shuhao Fang

    (School of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan 316022, China)

  • Jing Wang

    (School of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan 316022, China)

  • Changan Xie

    (School of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan 316022, China)

  • Dingding Yang

    (School of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan 316022, China)

Abstract

To improve the safety level of pile foundation construction for offshore wind power, in this study, the risk indicators of pile foundation construction were evaluated using the analytic hierarchy process (AHP) and comprehensive evaluation methods. The pile foundation construction operation process for offshore wind power mainly includes four phases: preparation for construction, pile sinking, end of construction, and foundation scour protection construction. Pile foundation construction risk indicators are systematically identified as human factors, material factors, management factors, and environmental factors. The most important indicators for pile foundation construction for offshore wind power were evaluated using AHP and comprehensive evaluation methods, which included five indicators: piling equipment, protective equipment, special skills, safety awareness, and emergency management. The four more important indicators are workplace environment, lifting equipment, fire protection systems, and operations. According to the results of our evaluation of the pile foundation construction safety indicators presented herein, corresponding recommendations are made that consider four aspects—human factors, material factors, management factors, and environmental factors. The construction industry should focus on improving the safety measures related to aspects with greater risk indicators. Pile foundation construction for offshore wind power can be evaluated using the method discussed in this paper, allowing industry stakeholders to prioritize and focus on improving safety measures related to aspects with greater risk indicators.

Suggested Citation

  • Qiang Zhang & Hui Huang & Hao Xu & Zhenming Li & Xinjiao Tian & Shuhao Fang & Jing Wang & Changan Xie & Dingding Yang, 2024. "A Hierarchical Analysis Method for Evaluating the Risk Factors of Pile Foundation Construction for Offshore Wind Power," Sustainability, MDPI, vol. 16(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:7906-:d:1475274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/7906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/7906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    2. Yongyu Wang & Xiaoyang Ni & Jie Wang & Ziyi Hu & Kaihua Lu, 2020. "A Comprehensive Investigation on the Fire Hazards and Environmental Risks in a Commercial Complex Based on Fault Tree Analysis and the Analytic Hierarchy Process," IJERPH, MDPI, vol. 17(19), pages 1-11, October.
    3. Hongliang Tang & Pengkun Shi & Xiaoli Fu, 2023. "An Analysis of Soil Erosion on Construction Sites in Megacities Using Analytic Hierarchy Process," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    4. Cheng-Yu Ku & Lien-Kwei Chien, 2016. "Modeling of Load Bearing Characteristics of Jacket Foundation Piles for Offshore Wind Turbines in Taiwan," Energies, MDPI, vol. 9(8), pages 1-14, August.
    5. Li, Cun-bin & Li, Peng & Feng, Xia, 2014. "Analysis of wind power generation operation management risk in China," Renewable Energy, Elsevier, vol. 64(C), pages 266-275.
    6. Suyan Zhao & Xiaopai Su & Jiahui Li & Guibin Suo & Xiaoxuan Meng, 2023. "Research on Wind Power Project Risk Management Based on Structural Equation and Catastrophe Theory," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    2. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    3. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    4. Fan, Zhi-Ping & Cai, Siqin & Guo, Dongliang & Xu, Bo, 2022. "Facing the uncertainty of renewable energy production: Production decisions of a power plant with different risk attitudes," Renewable Energy, Elsevier, vol. 199(C), pages 1237-1247.
    5. Thomas Poulsen & Charlotte Bay Hasager, 2017. "The (R)evolution of China: Offshore Wind Diffusion," Energies, MDPI, vol. 10(12), pages 1-32, December.
    6. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Review of developments and insights into an index system of wind power utilization level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 463-471.
    7. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    8. Wenjin Li & Bingkang Li & Rengcun Fang & Peipei You & Yuxin Zou & Zhao Xu & Sen Guo, 2021. "Risk Evaluation of Electric Power Grid Enterprise Related to Electricity Transmission and Distribution Tariff Regulation Employing a Hybrid MCDM Model," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    9. Baocui Min & Faizan Alam & Wei Zhao & Jinhong Tao, 2024. "Crafting a framework: a Delphi method approach to formulating a maker literacy assessment model for primary school students in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    10. Zeinalnezhad, Masoomeh & Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Hashemi, Leila Sadat & Klemeš, Jiří Jaromír, 2021. "A hybrid risk analysis model for wind farms using Coloured Petri Nets and interpretive structural modelling," Energy, Elsevier, vol. 229(C).
    11. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    12. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    13. Al-Nory, Malak & El-Beltagy, Mohamed, 2014. "An energy management approach for renewable energy integration with power generation and water desalination," Renewable Energy, Elsevier, vol. 72(C), pages 377-385.
    14. Sudeesha Warunasinghe & Anatoliy Swishchuk, 2024. "Stochastic Modeling of Wind Derivatives with Application to the Alberta Energy Market," Risks, MDPI, vol. 12(2), pages 1-26, January.
    15. Zahraa Tarek & Ahmed M. Elshewey & Samaa M. Shohieb & Abdelghafar M. Elhady & Noha E. El-Attar & Sherif Elseuofi & Mahmoud Y. Shams, 2023. "Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    16. Wu, Zhongqun & Sun, Hongxia, 2015. "Behavior of Chinese enterprises in evaluating wind power projects: A review based on survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 133-142.
    17. Lorenzo Alessi & José A. F. O. Correia & Nicholas Fantuzzi, 2019. "Initial Design Phase and Tender Designs of a Jacket Structure Converted into a Retrofitted Offshore Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-28, February.
    18. Chin-Wen Liao & Kai-Chao Yao & Chin-Tang Tsai & Jing-Ran Xu & Wei-Lun Huang & Wei-Sho Ho & Yu-Peng Wang, 2023. "Constructing and Validating Professional Competence Indicators for Underwater Welding Technicians for Offshore Wind Power Generation in Taiwan," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    19. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    20. Diógenes, Jamil Ramsi Farkat & Claro, João & Rodrigues, José Coelho, 2019. "Barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 128(C), pages 253-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:7906-:d:1475274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.