IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7607-d1469893.html
   My bibliography  Save this article

An Empirical Study on Lightweight CNN Models for Efficient Classification of Used Electronic Parts

Author

Listed:
  • Praneel Chand

    (Sydney International School of Technology and Commerce, Sydney, NSW 2000, Australia)

  • Mansour Assaf

    (School of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific, Suva 1168, Fiji)

Abstract

The problem of electronic waste (e-waste) presents a significant challenge in our society as outdated electronic devices are frequently discarded rather than recycled. To tackle this issue, it is important to embrace circular economy principles. One effective approach is to desolder and reuse electronic components, thereby reducing waste buildup. Automated vision-based techniques, often utilizing deep learning models, are commonly employed to identify and locate objects in sorting applications. Artificial intelligence (AI) and deep learning processes often require significant computational resources to perform automated tasks. These computational resources consume energy from the grid. Consequently, a rise in the use of AI can lead to higher demand for energy resources. This research empirically develops a lightweight convolutional neural network (CNN) model by exploring models utilising various grayscale image resolutions and comparing their performance with pre-trained RGB image classifier models. The study evaluates the lightweight CNN classifier’s ability to achieve an accuracy comparable to pre-trained red–green–blue (RGB) image classifiers. Experiments demonstrate that lightweight CNN models using 100 × 100 pixels and 224 × 224 pixels grayscale images can achieve accuracies on par with more complex pre-trained RGB classifiers. This permits the use of reduced computational resources for environmental sustainability.

Suggested Citation

  • Praneel Chand & Mansour Assaf, 2024. "An Empirical Study on Lightweight CNN Models for Efficient Classification of Used Electronic Parts," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7607-:d:1469893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ipek Atik, 2022. "Classification of Electronic Components Based on Convolutional Neural Network Architecture," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    3. Yuanyuan Xu & Genke Yang & Jiliang Luo & Jianan He, 2020. "An Electronic Component Recognition Algorithm Based on Deep Learning with a Faster SqueezeNet," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Praneel Chand, 2023. "A Low-Resolution Used Electronic Parts Image Dataset for Sorting Application," Data, MDPI, vol. 8(1), pages 1-11, January.
    2. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    3. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    4. Rainer Alt, 2021. "Electronic Markets on robotics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 465-471, September.
    5. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    6. Abdulwahhab, Ali H. & Abdulaal, Alaa Hussein & Thary Al-Ghrairi, Assad H. & Mohammed, Ali Abdulwahhab & Valizadeh, Morteza, 2024. "Detection of epileptic seizure using EEG signals analysis based on deep learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    8. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    9. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    10. Xu, Yuanyuan & Yang, Genke & Luo, Jiliang & He, Jianan & Sun, Haixin, 2022. "A multi-location short-term wind speed prediction model based on spatiotemporal joint learning," Renewable Energy, Elsevier, vol. 183(C), pages 148-159.
    11. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    12. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    13. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    14. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    15. Thomas Grisold & Christian Janiesch & Maximilian Röglinger & Moe Thandar Wynn, 2022. "Call for Papers, Issue 5/2024," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 841-843, December.
    16. Joshua Holstein & Max Schemmer & Johannes Jakubik & Michael Vössing & Gerhard Satzger, 2023. "Sanitizing data for analysis: Designing systems for data understanding," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-18, December.
    17. Junwei Zhou & Yanguo Fan & Qingchun Guan & Guangyue Feng, 2024. "Research on Drought Monitoring Based on Deep Learning: A Case Study of the Huang-Huai-Hai Region in China," Land, MDPI, vol. 13(5), pages 1-20, May.
    18. Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
    19. Yuanyuan Yang & Md Muhie Menul Haque & Dongling Bai & Wei Tang, 2021. "Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review," Energies, MDPI, vol. 14(21), pages 1-26, October.
    20. Patrick Zschech, 2023. "Beyond descriptive taxonomies in data analytics: a systematic evaluation approach for data-driven method pipelines," Information Systems and e-Business Management, Springer, vol. 21(1), pages 193-227, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7607-:d:1469893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.