IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7290-d1463316.html
   My bibliography  Save this article

Analysis of the Characteristics and Driving Mechanisms of Carbon Emission Decoupling in the Hu-Bao-O-Yu City Cluster under the “Double Carbon” Target

Author

Listed:
  • Mengting Zhou

    (School of Economics and Management, Beijing Forestry University, Beijing 100107, China)

  • Jingran Yang

    (School of Economics and Management, Beijing Forestry University, Beijing 100107, China)

  • Xuanwei Ning

    (School of Economics and Management, Beijing Forestry University, Beijing 100107, China)

  • Chengliang Wu

    (School of Economics and Management, Beijing Forestry University, Beijing 100107, China)

  • Yang Zhang

    (School of Economics and Management, Beijing Forestry University, Beijing 100107, China)

Abstract

The Hu-Bao-O-Yu urban area is a major source of carbon emissions in China. It is also a major source of energy exports and high-end chemicals in China. Reaching peak carbon emissions early is especially important for meeting the national peak goal. For urban areas that rely on natural resources, we need to make it clearer how carbon emissions and economic growth affect each other and slowly break the strong link between the two. Therefore, in this paper, based on the data on carbon emissions, the decoupling state and the driving mechanism of carbon emissions in the Hu-Bao-O-Yu City group are researched by using the Tapio decoupling model and GDIM method. A new decoupling index model is constructed by combining GDIM and the traditional decoupling model. The main findings are as follows: (1) The Hu-Bao-O-Yu urban agglomeration, Ordos City, Baotou City and Yulin City have significant growth trends in annual carbon emissions, with Yulin City being the most important carbon source for the Hu-Bao-O-Yu urban agglomeration and its economic contribution to carbon emissions of the whole urban agglomeration is the most efficient. (2) The decoupling of Hu-Bao-O-Yu, Huhhot City, Baotou City, and Ordos City is dominated by expansionary negative decoupling, whereas Yulin City has strong negative decoupling. (3) The Hu-Bao-O-Yu urban cluster mainly affects the carbon intensity of fixed asset investments and output carbon intensity, which is a key part of the carbon separation process. The energy scale and structure also play a part in this process over time. (4) Changes in GDP per capita are a bigger part of changes in carbon emissions in the Hu-Bao-O-Yu urban agglomeration. These changes also determine the direction for changes in carbon emissions in the Hu-Bao-O-Yu urban agglomeration. In the future, the Hu-Bao-O-Yu urban agglomeration needs to coordinate its economic growth. Ordos and Yulin need to speed up the optimisation and transformation of their energy structures. Baotou needs to push for the low-carbon transformation of its industries. Huhhot needs to do more research on carbon sequestration technology and spend more on environmental protection. This will make the Hu-Bao-O-Yu urban agglomeration a resource-saving urban agglomeration and improve its ability to reduce emissions.

Suggested Citation

  • Mengting Zhou & Jingran Yang & Xuanwei Ning & Chengliang Wu & Yang Zhang, 2024. "Analysis of the Characteristics and Driving Mechanisms of Carbon Emission Decoupling in the Hu-Bao-O-Yu City Cluster under the “Double Carbon” Target," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7290-:d:1463316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chun He & Yun-Peng Wang & Kai Tang, 2023. "Impact of Low-Carbon City Construction Policy on Green Innovation Performance in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 59(1), pages 15-26, January.
    2. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    3. Bas Straatman & Britta Boyd & Diana Mangalagiu & Peter Rathje & Christian Eriksen & Bjarne Madsen & Irena Stefaniak & Morten Jensen & Steen Rasmussen, 2018. "A consumption-based, regional input-output analysis of greenhouse gas emissions and the carbon regional index," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 21(1/2), pages 1-36.
    4. Liu, Fengqi & Kang, Yuxin & Guo, Kun, 2022. "Is electricity consumption of Chinese counties decoupled from carbon emissions? A study based on Tapio decoupling index," Energy, Elsevier, vol. 251(C).
    5. Chaohui Zhang & Xin Dong & Ze Zhang, 2023. "Spatiotemporal Dynamic Distribution, Regional Differences and Spatial Convergence Mechanisms of Carbon Emission Intensity: Evidence from the Urban Agglomerations in the Yellow River Basin," IJERPH, MDPI, vol. 20(4), pages 1-28, February.
    6. Suxia Zhao & Mengmeng Yin, 2023. "Research on Rural Population/Arable Land/Rural Settlements Association Model and Coordinated Development Path: A Case Analysis of the Yellow River Basin (Henan Section)," IJERPH, MDPI, vol. 20(5), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhanhang & Zeng, Chen & Li, Keke & Yang, Yuemin & Zhao, Kuokuo & Wang, Zhen, 2024. "Decomposition of the decoupling between electricity CO2 emissions and economic growth: A production and consumption perspective," Energy, Elsevier, vol. 293(C).
    2. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    3. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
    4. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    6. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    7. Di Peng & Haibin Liu, 2022. "Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model," Energies, MDPI, vol. 16(1), pages 1-19, December.
    8. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).
    9. Umar, Bamanga & Alam, Md. Mahmudul & Al-Amin, Abul Quasem, 2021. "Exploring the Contribution of Energy Price to Carbon Emissions in African Countries," OSF Preprints ru4jz, Center for Open Science.
    10. Fuzhong Chen & Guohai Jiang & Getachew Magnar Kitila, 2021. "Trade Openness and CO 2 Emissions: The Heterogeneous and Mediating Effects for the Belt and Road Countries," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    11. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    12. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    13. Qianqian Xiao & Zi’ang Chu & Changfeng Shi, 2024. "The Inter-Regional Embodied Carbon Flow Pattern in China Based on Carbon Peaking Stress," Energies, MDPI, vol. 17(12), pages 1-18, June.
    14. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    15. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    16. Jiandong Chen & Sishi Rong & Malin Song, 2021. "Poverty Vulnerability and Poverty Causes in Rural China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 65-91, January.
    17. Marco Due~nas & Antoine Mandel, 2024. "Are EU low-carbon structural funds efficient in reducing emissions?," Papers 2408.01782, arXiv.org.
    18. Li, Kong & Xianzhong, Mu & Guangwen, Hu, 2021. "A decomposing analysis of productive and residential energy consumption in Beijing," Energy, Elsevier, vol. 226(C).
    19. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    20. Margarida Rodrigues & Mário Franco, 2023. "Green Innovation in Small and Medium-Sized Enterprises (SMEs): A Qualitative Approach," Sustainability, MDPI, vol. 15(5), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7290-:d:1463316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.