IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7275-d1462994.html
   My bibliography  Save this article

Investigation of Novel Transition Metal Loaded Hydrochar Catalyst Synthesized from Waste Biomass (Rice Husk) and Its Application in Biodiesel Production Using Waste Cooking Oil (WCO)

Author

Listed:
  • Laraib Aamir Khan

    (U.S-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Rabia Liaquat

    (U.S-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Mohammed Aman

    (Department of Industrial Engineering, College of Engineering, University of Business and Technology, Jeddah 21448, Saudi Arabia)

  • Mohammad Kanan

    (Department of Industrial Engineering, College of Engineering, University of Business and Technology, Jeddah 21448, Saudi Arabia)

  • Muhammad Saleem

    (Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Asif Hussain khoja

    (U.S-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Ali Bahadar

    (Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Waqar Ul Habib Khan

    (U.S-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

Abstract

The decarbonization of transportation plays a crucial role in mitigating climate change, and biodiesel has emerged as a promising solution due to its renewable and eco-friendly nature. However, in order to maintain the momentum of the “green trend” and ensure energy security, an ecologically friendly pathway is important to produce efficient biodiesel. In this work, activated carbon (AC) obtained from rice husk (RH) is hydrothermally prepared and modified through cobalt transition metal for catalyst support for the transesterification process. The physicochemical characteristics of the synthesized catalysts are examined using XRD, FTIR, SEM and EDS, TGA, and BET, while the produced biodiesel is also characterized using Gas Chromatography and Mass Spectroscopy (GC-MS). To optimize the transesterification process, Fatty Acid Methyl Esters (FAME) are produced by the conversion of waste cooking oil. Response Surface Methodology (RSM) is used to validate temperature (75 °C), the methanol-to-oil molar ratio (1:9), catalyst weight percentage (2 wt.%), and retention time (52.5 min). The highest conversion rate of waste cooking oil (WCO) to biodiesel was recorded at 96.3% and tested as per American Society for Testing and Materials (ASTM) standards. Based on the results, it is clear that cobalt-loaded rice husk-based green catalyst (RHAC-Co) enhanced catalytic activity and yield for biodiesel production. Further research should focus on engine performance evaluation and scaling up of the catalyst by optimizing it for the industrial scale.

Suggested Citation

  • Laraib Aamir Khan & Rabia Liaquat & Mohammed Aman & Mohammad Kanan & Muhammad Saleem & Asif Hussain khoja & Ali Bahadar & Waqar Ul Habib Khan, 2024. "Investigation of Novel Transition Metal Loaded Hydrochar Catalyst Synthesized from Waste Biomass (Rice Husk) and Its Application in Biodiesel Production Using Waste Cooking Oil (WCO)," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7275-:d:1462994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    2. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    3. Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
    4. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    5. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    6. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    7. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    8. Khozeymeh Nezhad, Marziyeh & Aghaei, Hamidreza, 2021. "Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil," Renewable Energy, Elsevier, vol. 164(C), pages 876-888.
    9. Padula, Miquele L. & Romero, Arthur S. & Hotza, Dachamir & Innocentini, Murilo D.M. & Pinto, Maria E.G. & Pedrini, Augusto S. & Rebelatto, Evertan & Ribeiro, Luiz Fernando B. & Zin, Guilherme & Olivei, 2022. "Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane," Renewable Energy, Elsevier, vol. 187(C), pages 237-247.
    10. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    11. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    12. Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.
    13. de Freitas, Flávio A. & Mendonça, Igor R.S. & Barros, Silma de S. & Pessoa Jr., Wanison G.A. & Sá, Ingrity S.C. & Gato, Larissa B. & Silva, Edson P. & Farias, Marco A.S. & Nobre, Francisco X. & Maia, , 2022. "Biodiesel production from tucumã (Astrocaryum aculeatum Meyer) almond oil applying the electrolytic paste of spent batteries as a catalyst," Renewable Energy, Elsevier, vol. 191(C), pages 919-931.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7275-:d:1462994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.