IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p366-d762844.html
   My bibliography  Save this article

Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China

Author

Listed:
  • Yangyang Wang

    (School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China)

  • Yanjun Liu

    (School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China)

  • Guolei Zhou

    (School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China)

  • Zuopeng Ma

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130102, China)

  • Hongri Sun

    (School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China)

  • Hui Fu

    (School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China)

Abstract

Compact development and efficient land use are effective ways to address the development dilemma and boost the vitality of shrinking cities. Moreover, it is critical to investigate the relationship between compactness and land-use efficiency in order to healthily and sustainably develop shrinking cities. This study developed an analytical framework to study the coordinated interaction between urban compactness and land-use efficiency in the context of city shrinkage. Fifteen typical shrinking cities in Northeast China were taken as an example of the phenomenon and the entropy value method and super-slack-based measure model were used to quantitatively measure the compactness and land-use efficiency. Furthermore, the coordinated development level and the coordinated relationship between the two were explored with the help of the coupled coordination degree model as well as the quadrant diagram method. The results of the study show that: (1) The overall level of compactness of 15 shrinking cities in Northeast China was low and the improvement of land-use efficiency was not obvious, while the differences of compactness and land-use efficiency between shrinking cities were significant. (2) The coordination between compactness and land-use efficiency was limited; however, the overall coordination remained intermediate, with significant spatial differences and a tendency to further expand. The problem of lagged development of land-use efficiency in shrinking cities could be characterized as serious. (3) Economic development and population size promote the coordinated development of urban compactness and land-use efficiency, whereas science and technology development, industrial structure, as well as government regulation inhibited the coordinated development of urban compactness and land-use efficiency.

Suggested Citation

  • Yangyang Wang & Yanjun Liu & Guolei Zhou & Zuopeng Ma & Hongri Sun & Hui Fu, 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China," Land, MDPI, vol. 11(3), pages 1-19, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:366-:d:762844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miriam Steurer & Caroline Bayr, 2020. "Measuring Urban Sprawl using Land Use Data," Graz Economics Papers 2020-02, University of Graz, Department of Economics.
    2. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    3. Yingkai Tang & Kun Wang & Xuanming Ji & He Xu & Yangqing Xiao, 2021. "Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations," Land, MDPI, vol. 10(7), pages 1-19, July.
    4. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    5. Xu, Gang & Zhou, Zhengzi & Jiao, Limin & Zhao, Rui, 2020. "Compact Urban Form and Expansion Pattern Slow Down the Decline in Urban Densities: A Global Perspective," Land Use Policy, Elsevier, vol. 94(C).
    6. Zhao, Qianyu & Bao, Helen X.H. & Zhang, Zhanlu, 2021. "Off-farm employment and agricultural land use efficiency in China," Land Use Policy, Elsevier, vol. 101(C).
    7. Huisheng Yu & Jun Yang & Dongqi Sun & Tong Li & Yanjun Liu, 2022. "Spatial Responses of Ecosystem Service Value during the Development of Urban Agglomerations," Land, MDPI, vol. 11(2), pages 1-12, January.
    8. Qunxi Gong & Gengxuan Guo & Sipan Li & Xuedong Liang, 2021. "Examining the Coupling Coordinated Relationship between Urban Industrial Co-Agglomeration and Intensive Land Use," Land, MDPI, vol. 10(5), pages 1-12, May.
    9. Yan, Siqi & Peng, Jianchao & Wu, Qun, 2020. "Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China," Land Use Policy, Elsevier, vol. 99(C).
    10. Xie, Xue & Fang, Bin & Xu, Hanzeyu & He, Shasha & Li, Xin, 2021. "Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China," Land Use Policy, Elsevier, vol. 102(C).
    11. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    12. Xingran Cai & Yanqing Liang & Zhiying Huang & Jingfeng Ge, 2021. "Spatiotemporal pattern and coordination relationship between urban residential land price and land use intensity in 31 provinces and cities in China," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-16, July.
    13. Steurer, Miriam & Bayr, Caroline, 2020. "Measuring urban sprawl using land use data," Land Use Policy, Elsevier, vol. 97(C).
    14. Xin Janet Ge & Xiaoxia Liu, 2021. "Urban Land Use Efficiency under Resource-Based Economic Transformation—A Case Study of Shanxi Province," Land, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liguo Zhang & Luchen Huang & Jinglin Xia & Kaifeng Duan, 2022. "Spatial-Temporal Evolution and Its Influencing Factors on Urban Land Use Efficiency in China’s Yangtze River Economic Belt," Land, MDPI, vol. 12(1), pages 1-19, December.
    2. Wei Liu & Yao Tong & Jing Zhang & Zuopeng Ma & Guolei Zhou & Yanjun Liu, 2022. "Hierarchical Correlates of the Shrinkage of Cities and Towns in Northeast China," Land, MDPI, vol. 11(12), pages 1-21, December.
    3. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    4. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.
    5. Chengzhen Song & Qingfang Liu & Jinping Song & Zhengyun Jiang & Zhilin Lu & Yueying Chen, 2022. "Land Use Efficiency in the Yellow River Basin in the Background of China’s Economic Transformation: Spatial-Temporal Characteristics and Influencing Factors," Land, MDPI, vol. 11(12), pages 1-22, December.
    6. Xiaoling Dai & Jiafeng Jin & Qianhu Chen & Xin Fang, 2022. "On Physical Urban Boundaries, Urban Sprawl, and Compactness Measurement: A Case Study of the Wen-Tai Region, China," Land, MDPI, vol. 11(10), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhou & Yi Chen & Yi Hu, 2021. "Assessing Efficiency of Urban Land Utilisation under Environmental Constraints in Yangtze River Delta, China," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    2. Rongtian Zhang & Jianfei Lu, 2022. "Spatial–Temporal Pattern and Convergence Characteristics of Provincial Urban Land Use Efficiency under Environmental Constraints in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    3. Zhangsheng Liu & Binbin Lai & Shuangyin Wu & Xiaotian Liu & Qunhong Liu & Kun Ge, 2022. "Growth Targets Management, Regional Competition and Urban Land Green Use Efficiency According to Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
    4. Chengzhen Song & Qingfang Liu & Jinping Song & Zhengyun Jiang & Zhilin Lu & Yueying Chen, 2022. "Land Use Efficiency in the Yellow River Basin in the Background of China’s Economic Transformation: Spatial-Temporal Characteristics and Influencing Factors," Land, MDPI, vol. 11(12), pages 1-22, December.
    5. Yayuan Pang & Xinjun Wang, 2020. "Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    6. Shuai Wang & Cunyi Yang & Zhenghui Li, 2021. "Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency," Land, MDPI, vol. 10(10), pages 1-26, October.
    7. Jie Zhang & Yajing Wang & Jiangfeng Li, 2023. "Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    8. Bingqing Li & Zhanqi Wang & Feng Xu, 2022. "Does Optimization of Industrial Structure Improve Green Efficiency of Industrial Land Use in China?," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    9. Ning Xu & Desen Zhao & Wenjie Zhang & He Zhang & Wanxu Chen & Min Ji & Ming Liu, 2022. "Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(10), pages 1-21, September.
    10. Di Zhu & Yinghong Wang & Shangui Peng & Fenglin Zhang, 2022. "Influence Mechanism of Polycentric Spatial Structure on Urban Land Use Efficiency: A Moderated Mediation Model," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    11. Liguo Zhang & Luchen Huang & Jinglin Xia & Kaifeng Duan, 2022. "Spatial-Temporal Evolution and Its Influencing Factors on Urban Land Use Efficiency in China’s Yangtze River Economic Belt," Land, MDPI, vol. 12(1), pages 1-19, December.
    12. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    13. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    14. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    15. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    16. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    17. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Can Zhang & Jixia Li, 2024. "The Impact of Official Promotion Incentives on Urban Ecological Welfare Performance and Its Spatial Effect," Sustainability, MDPI, vol. 16(7), pages 1-29, April.
    19. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    20. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:366-:d:762844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.