IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7188-d1461047.html
   My bibliography  Save this article

Experimental and Numerical Studies on the Fire Performance of Thin Sustainable Wood-Based Laminated Veneers

Author

Listed:
  • Avishek Chanda

    (Composite Materials and Engineering Center, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA)

  • Oisik Das

    (Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden)

  • Debes Bhattacharyya

    (Centre for Advanced Manufacturing and Materials Design, Faculty of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand)

Abstract

Wood and wood-based products are abundantly used, especially in structural applications, due to the impetus for sustainable development. The present work helps highlight the fire performance of plywood, one of the most used wood-based laminated structural components, under three different heat fluxes of 35 kW/m 2 , 50 kW/m 2 , and 65 kW/m 2 . The effects on the various fire reaction properties, namely, time to ignition, heat release rate, peak heat release rate, time to peak heat release rate, time to flameout, total burn time, and mass loss, were observed and reported. The times to ignition (42.2% and 35.4%), peak heat release rate (27.7% and 18.9%), flameout (22.2% and 28.6%), burn time (10.6% and 16.1%), and residual mass (25% and 53.3%) were reduced with the increase in heat flux from 35 kW/m 2 to 65 kW/m 2 , respectively, whereas the peak heat release (21.7% and 2.4%) and ignition temperature (6.5% and 6.6%) were observed to increase. The vertical burning test (UL-94) illustrated the plywood samples to have a V-1 rating, with self-extinguishing capabilities. A numerical predictive model has also been developed based on the Fire Dynamics Simulator to predict the time to ignition, time to flameout, and heat release rate trend along with the peak heat release rate—it is shown to have good agreement with the experimental results, with an average correlation coefficient of 0.87.

Suggested Citation

  • Avishek Chanda & Oisik Das & Debes Bhattacharyya, 2024. "Experimental and Numerical Studies on the Fire Performance of Thin Sustainable Wood-Based Laminated Veneers," Sustainability, MDPI, vol. 16(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7188-:d:1461047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sathre, Roger & Gustavsson, Leif, 2009. "Using wood products to mitigate climate change: External costs and structural change," Applied Energy, Elsevier, vol. 86(2), pages 251-257, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    2. Shenghan Li & Huanyu Wu & Zhikun Ding, 2018. "Identifying Sustainable Wood Sources for the Construction Industry: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    3. Luo, Wen & Mineo, Keito & Matsushita, Koji & Kanzaki, Mamoru, 2018. "Consumer willingness to pay for modern wooden structures: A comparison between China and Japan," Forest Policy and Economics, Elsevier, vol. 91(C), pages 84-93.
    4. Cruz Jr., Jose B. & Tan, Raymond R. & Culaba, Alvin B. & Ballacillo, Jo-Anne, 2009. "A dynamic input-output model for nascent bioenergy supply chains," Applied Energy, Elsevier, vol. 86(Supplemen), pages 86-94, November.
    5. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    6. Zubizarreta-Gerendiain, Ane & Pukkala, Timo & Peltola, Heli, 2016. "Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a Finnish case study," Forest Policy and Economics, Elsevier, vol. 62(C), pages 168-176.
    7. Di Letizia, Gerardo & De Lucia, Caterina & Pazienza, Pasquale & Cappelletti, Giulio Mario, 2023. "Forest bioeconomy at regional scale: A systematic literature review and future policy perspectives," Forest Policy and Economics, Elsevier, vol. 155(C).
    8. Margareta RUSU, 2014. "Enegy Forestry A Source Of Energy For The Romanian Economy," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 4, pages 667-674, July.
    9. Ericsson, Karin & Nilsson, Lars J. & Nilsson, Måns, 2011. "New energy strategies in the Swedish pulp and paper industry--The role of national and EU climate and energy policies," Energy Policy, Elsevier, vol. 39(3), pages 1439-1449, March.
    10. Toivonen, Ritva & Lilja, Anna & Vihemäki, Heini & Toppinen, Anne, 2021. "Future export markets of industrial wood construction – A qualitative backcasting study," Forest Policy and Economics, Elsevier, vol. 128(C).
    11. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    12. Jozef Švajlenka & Mária Kozlovská, 2018. "Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    13. Steffen Lehmann, 2012. "Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems," Sustainability, MDPI, vol. 4(10), pages 1-36, October.
    14. Eeva-Sofia Säynäjoki & Pia Korba & Elina Kalliala & Aino-Kaisa Nuotio, 2018. "GHG Emissions Reduction through Urban Planners’ Improved Control over Earthworks: A Case Study in Finland," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    15. Hemström, Kerstin & Mahapatra, Krushna & Gustavsson, Leif, 2011. "Perceptions, attitudes and interest of Swedish architects towards the use of wood frames in multi-storey buildings," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1013-1021.
    16. Hurmekoski, Elias & Hetemäki, Lauri & Linden, Mika, 2015. "Factors affecting sawnwood consumption in Europe," Forest Policy and Economics, Elsevier, vol. 50(C), pages 236-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7188-:d:1461047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.