IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7057-d1458126.html
   My bibliography  Save this article

Thermo-Chemical Characterization of Organic Phase Change Materials (PCMs) Obtained from Lost Wax Casting Industry

Author

Listed:
  • Antonella Sarcinella

    (Innovation Engineering Department, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

  • Sandra Cunha

    (Centre for Territory, Environment and Construction (CTAC), Department of Civil Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal)

  • José Aguiar

    (Centre for Territory, Environment and Construction (CTAC), Department of Civil Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal)

  • Mariaenrica Frigione

    (Innovation Engineering Department, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

Abstract

The high global energy demand drives the search for sustainable alternatives for energy production and storage. Among the most effective solutions are phase change materials (PCMs). In particular, organic PCMs offer a high capacity to store and release thermal energy in response to external thermal variations, even over a wide temperature range. They find profitable applications in various sectors, from construction to electronics, offering flexibility and considerable energy storage according to need. In the search for new and effective PCMs, reusing by-products from different industries would offer both economic and environmental benefits. With this goal in mind, several organic PCMs with different characteristics and origins were analyzed in the present study. Two of them were by-products of the lost wax casting industry. In fact, we wanted to verify whether this waste could be employed as an effective, low-cost PCM. For comparison purposes, two commercial PCMs were selected, namely a paraffin and a microencapsulated PCM. Finally, a PCM blend was produced by mixing a commercial PCM and a waxy by-product. The five selected or developed PCMs were subjected to different tests to investigate their chemical composition, thermal characteristics, and thermal stability before and after repeated (i.e., 100) cycles of melting and crystallization processes. The results demonstrated that the durability of the non-commercial PCMs with regard to thermal loads was not inferior, and was in some cases even superior, to commercial PCMs. This study therefore proposes an innovative path to reuse the by-products of different production processes to support the environment.

Suggested Citation

  • Antonella Sarcinella & Sandra Cunha & José Aguiar & Mariaenrica Frigione, 2024. "Thermo-Chemical Characterization of Organic Phase Change Materials (PCMs) Obtained from Lost Wax Casting Industry," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7057-:d:1458126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    2. K. B. Prakash & Manoj Kumar Pasupathi & Subramaniyan Chinnasamy & S. Saravanakumar & Murugesan Palaniappan & Abdulaziz Alasiri & M. Chandrasekaran, 2023. "Energy and Exergy Enhancement Study on PV Systems with Phase Change Material," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xuemin & Zhang, Shanling & Yuan, Qing & Liu, Qingqing & Huang, Tingting & Li, Jinping & Wu, Qingbai & Zhang, Peng, 2024. "Gas production from hydrates by CH4-CO2 replacement: Effect of N2 and intermittent heating," Energy, Elsevier, vol. 288(C).
    2. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    3. Jheyson Andres Bedoya Londoño & Giovanni Franco Sepúlveda & Erick De la Barra Olivares, 2023. "Strategic Minerals for Climate Change and the Energy Transition: The Mining Contribution of Colombia," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    4. Zhang, Shanling & Ma, Yingrui & Xu, Zhenhua & Zhang, Yongtian & Liu, Xiang & Zhong, Xiuping & Tu, Guigang & Chen, Chen, 2024. "Numerical simulation study of natural gas hydrate extraction by depressurization combined with CO2 replacement," Energy, Elsevier, vol. 303(C).
    5. Yang, Chengying & Li, Mingming & Zhou, Dianyi, 2024. "Energy assessment in rural regions of China with various scenarios: Historical–to–futuristic," Energy, Elsevier, vol. 302(C).
    6. Yu, Zhichao & Kamran, Hafiz Waqas & Amin, Azka & Ahmed, Bilal & Peng, Sun, 2023. "Sustainable synergy via clean energy technologies and efficiency dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Gakuru, Elias & Yang, Shaohua & Namahoro, J.P. & Nie, Peng & Bunje, Madinatou Yeh & Aslam, Naveed, 2024. "Energy-focused green climate policies and trade nexus:Do heterogeneous effects on clean energy poverty matter?," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7057-:d:1458126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.