IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6758-d1451606.html
   My bibliography  Save this article

Voltage Hierarchical Control Strategy for Distribution Networks Based on Regional Autonomy and Photovoltaic-Storage Coordination

Author

Listed:
  • Jiang Wang

    (Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, Wuhan 430072, China
    School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Jinchen Lan

    (State Grid Fujian Electric Power Co., Ltd. Electric Power Science Research Institute, Fuzhou 350007, China)

  • Lianhui Wang

    (State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Yan Lin

    (State Grid Fujian Electric Power Co., Ltd. Electric Power Science Research Institute, Fuzhou 350007, China)

  • Meimei Hao

    (State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Yan Zhang

    (State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Yang Xiang

    (Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, Wuhan 430072, China
    School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Liang Qin

    (Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, Wuhan 430072, China
    School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

High-penetration photovoltaic (PV) integration into a distribution network can cause serious voltage overruns. This study proposes a voltage hierarchical control method based on active and reactive power coordination to enhance the regional voltage autonomy of an active distribution network and improve the sustainability of new energy consumption. First, considering the reactive power margin and spatiotemporal characteristics of distributed photovoltaics, a reactive voltage modularity function is proposed to divide a distribution grid into voltage regions. Voltage region types and their weak points are then defined, and the voltage characteristics and governance needs of different regions are obtained through photovoltaic voltage regulation. Subsequently, a dual-layer optimal configuration model of energy storage that accounts for regional voltage regulation is established. The upper-layer model focuses on planned configurations to minimize the annual comprehensive operating cost of the energy storage system (ESS), while the lower-layer model focuses on optimal dispatch to achieve the best regional voltage quality. KKT conditions and the Big-M method are employed to convert the dual-layer model into a single-layer linear model for optimization and solution. Finally, an IEEE 33-node system with high-penetration photovoltaics is modeled using MATLAB (2022a). A comparative analysis of four scenarios shows that the comprehensive cost of an ESS decreased by 8.49%, total revenue increased by 19.36%, and the overall voltage deviation in the distribution network was reduced to 0.217%.

Suggested Citation

  • Jiang Wang & Jinchen Lan & Lianhui Wang & Yan Lin & Meimei Hao & Yan Zhang & Yang Xiang & Liang Qin, 2024. "Voltage Hierarchical Control Strategy for Distribution Networks Based on Regional Autonomy and Photovoltaic-Storage Coordination," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6758-:d:1451606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Rushuai & Hu, Qinran & Cui, Hantao & Chen, Tao & Quan, Xiangjun & Wu, Zaijun, 2022. "An optimal bidding and scheduling method for load service entities considering demand response uncertainty," Applied Energy, Elsevier, vol. 328(C).
    2. Xiao He & Seiji Hashimoto & Wei Jiang & Jicheng Liu & Takahiro Kawaguchi, 2023. "Design and Implementation of a Low-Voltage Photovoltaic System Integrated with Battery Energy Storage," Energies, MDPI, vol. 16(7), pages 1-20, March.
    3. Liu, Jingkun & Zhang, Ning & Kang, Chongqing & Kirschen, Daniel & Xia, Qing, 2017. "Cloud energy storage for residential and small commercial consumers: A business case study," Applied Energy, Elsevier, vol. 188(C), pages 226-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    2. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    3. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    4. Pimm, Andrew J. & Cockerill, Tim T. & Taylor, Peter G. & Bastiaans, Jan, 2017. "The value of electricity storage to large enterprises: A case study on Lancaster University," Energy, Elsevier, vol. 128(C), pages 378-393.
    5. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    6. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Zhang, Wen-Yi & Zheng, Boshen & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2022. "Peer-to-peer transactive mechanism for residential shared energy storage," Energy, Elsevier, vol. 246(C).
    8. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.
    9. Qibo He & Changming Chen & Xin Fu & Shunjiang Yu & Long Wang & Zhenzhi Lin, 2024. "Joint Planning Method of Shared Energy Storage and Multi-Energy Microgrids Based on Dynamic Game with Perfect Information," Energies, MDPI, vol. 17(19), pages 1-20, September.
    10. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    11. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    12. Mingxi Cai & Tiejun Zeng & Linjun Zeng & Xinying Zhou & Xin Huang, 2024. "Optimised Two-Layer Configuration of SESS-CCHP System Considering Wind and Light Output Correlation and Load Sensitivity," Energies, MDPI, vol. 17(18), pages 1-19, September.
    13. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    14. Carson Duan, 2023. "A State-of-the-Art Review of Sharing Economy Business Models and a Forecast of Future Research Directions for Sustainable Development: A Bibliometric Analysis Approach," Sustainability, MDPI, vol. 15(5), pages 1-37, March.
    15. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    16. Li, Gaojunjie & Yang, Jun & Hu, Zhijian & Zhu, Xu & Xu, Jian & Sun, Yuanzhang & Zhan, Xiangpeng & Wu, Fuzhang, 2023. "A novel price-driven energy sharing mechanism for charging station operators," Energy Economics, Elsevier, vol. 118(C).
    17. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    18. Ute Paukstadt & Jörg Becker, 2021. "From Energy as a Commodity to Energy as a Service—A Morphological Analysis of Smart Energy Services," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 207-242, June.
    19. Lai, Kexing & Illindala, Mahesh S., 2018. "A distributed energy management strategy for resilient shipboard power system," Applied Energy, Elsevier, vol. 228(C), pages 821-832.
    20. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6758-:d:1451606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.