IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14413-d1252202.html
   My bibliography  Save this article

Material Tradeoff of Rotor Architecture for Lightweight Low-Loss Cost-Effective Sustainable Electric Drivetrains

Author

Listed:
  • Ahmed Selema

    (Department of Electromechanical, Systems and Metal Engineering, Ghent University, 9000 Ghent, Belgium
    FlandersMake@UGent, Core Lab MIRO, 3001 Leuven, Belgium)

Abstract

The art of the successful design of high-speed electrical machines comes with many challenges in the mass, size, reliability, and energy efficiency. Material engineering of electrical machines has been identified as a key solution for higher power dense electric drivetrains. One of the main challenges at high speed is the eddy-current losses in the active electromagnetic parts, especially magnetic materials and permanent magnets (PMs). This study is devoted to the selection of PM rotor materials using multidisciplinary design optimization for a high-speed electric drivetrain. Beside AC loss minimization, more disciplines are considered, such as the minimization of weight, and cost. Different laminations are investigated with different magnetic properties as well as cost. Additionally, different PMs are optimized considering low-cost ferrite and high-coercivity permanent magnets (HCPMs). Moreover, the optimal materials are identified which have the best balance between loss, weight, cost, ripples. Finally, different rotor designs are prototyped, assembled, and tested using the same stator configuration. Also, the best rotor design is selected, and the electromagnetic performance is measured and compared with conventional designs. The optimal design results in 8% extra torque with at least 20% weight reduction.

Suggested Citation

  • Ahmed Selema, 2023. "Material Tradeoff of Rotor Architecture for Lightweight Low-Loss Cost-Effective Sustainable Electric Drivetrains," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14413-:d:1252202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Selema & Mohamed N. Ibrahim & Peter Sergeant, 2022. "Non-Destructive Electromagnetic Evaluation of Material Degradation Due to Steel Cutting in a Fully Stacked Electrical Machine," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Joseph Abed & Scott Rayburg & John Rodwell & Melissa Neave, 2022. "A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riley Jolly & Holly Fairweather & Scott Rayburg & John Rodwell, 2024. "Life Cycle Assessment and Cost Analysis of Mid-Rise Mass Timber vs. Concrete Buildings in Australia," Sustainability, MDPI, vol. 16(15), pages 1-18, July.
    2. Agnieszka Starzyk & Kinga Rybak-Niedziółka & Aleksandra Nowysz & Janusz Marchwiński & Alicja Kozarzewska & Joanna Koszewska & Anna Piętocha & Polina Vietrova & Przemysław Łacek & Mikołaj Donderewicz &, 2024. "New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria," Energies, MDPI, vol. 17(17), pages 1-28, September.
    3. Jiayi Li & Lars Vabbersgaard Andersen & Markus Matthias Hudert, 2023. "The Potential Contribution of Modular Volumetric Timber Buildings to Circular Construction: A State-of-the-Art Review Based on Literature and 60 Case Studies," Sustainability, MDPI, vol. 15(23), pages 1-32, November.
    4. Maria Dems & Zbigniew Gmyrek & Krzysztof Komeza, 2023. "The Influence of Cutting Technology on Magnetic Properties of Non-Oriented Electrical Steel—Review State of the Art," Energies, MDPI, vol. 16(11), pages 1-26, May.
    5. Carlos Rodriguez Franco & Deborah S. Page-Dumroese & Derek Pierson & Timothy Nicosia, 2024. "Biochar Utilization as a Forestry Climate-Smart Tool," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
    6. David A. Finnie & Rehan Masood & Seth Goldsworthy & Benjamin Harding, 2024. "Embodied Carbon in New Zealand Commercial Construction," Energies, MDPI, vol. 17(11), pages 1-15, May.
    7. Luis Orozco & Anna Krtschil & Hans Jakob Wagner & Simon Bechert & Felix Amtsberg & Jan Knippers & Achim Menges, 2023. "Co-Design Methods for Non-Standard Multi-Storey Timber Buildings," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    8. Victor De Araujo & André Christoforo, 2023. "The Global Cross-Laminated Timber (CLT) Industry: A Systematic Review and a Sectoral Survey of Its Main Developers," Sustainability, MDPI, vol. 15(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14413-:d:1252202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.