IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6319-d1441619.html
   My bibliography  Save this article

Integrated Assessment of Bearing Capacity and GHG Emissions for Foundation Treatment Piles Considering Stratum Variability

Author

Listed:
  • Huaicen Yuan

    (State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China)

  • Jun Shen

    (State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China)

  • Xinrui Zheng

    (State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China)

  • Xiaohua Bao

    (State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China)

  • Xiangsheng Chen

    (State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China)

  • Hongzhi Cui

    (State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China)

Abstract

Foundation treatment piles are crucial for enhancing the bearing capacity and stability of weak foundations and are widely utilized in construction projects. However, owing to the complexity of geological conditions, traditional construction methods fail to meet the demand for low-carbon development. To address these challenges, this study introduced a comprehensive decision-making approach that considers the impact of stratum variability on greenhouse gas (GHG) emissions and pile bearing capacity from the design phase. During the design process, the GHG emissions and bearing capacities of deep cement mixing (DCM) and high-pressure jet grouting (HPJG) piles were quantitatively assessed by analyzing the environmental and performance impacts of foundation treatment piles related to materials, transportation, and equipment usage. The results suggest that the bearing capacity of piles in shallow strata is highly susceptible to stratum variability. Using piles with a diameter of 800 mm and a length of 20 m as an example, compared with DCM piles, HPJG piles demonstrated a superior bearing capacity; however, their total GHG emissions were 6.58% higher, primarily because of the extensive use of machinery during HPJG pile construction. The GHG emissions of foundation treatment piles in shallow strata were influenced more by geological variability than those in deep strata. Sensitivity analysis revealed that the pile diameter is a critical determinant of GHG emissions and bearing capacity. Based on the bearing capacity–GHG emission optimization framework, a foundation treatment strategy that integrates overlapping and spaced pile arrangements was introduced. This innovative construction method reduced the total GHG emissions by 22.7% compared with conventional methods. These research findings contribute to low-carbon design in the construction industry.

Suggested Citation

  • Huaicen Yuan & Jun Shen & Xinrui Zheng & Xiaohua Bao & Xiangsheng Chen & Hongzhi Cui, 2024. "Integrated Assessment of Bearing Capacity and GHG Emissions for Foundation Treatment Piles Considering Stratum Variability," Sustainability, MDPI, vol. 16(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6319-:d:1441619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golnaz Mohebbi & Ali Bahadori-Jahromi & Marco Ferri & Anastasia Mylona, 2021. "The Role of Embodied Carbon Databases in the Accuracy of Life Cycle Assessment (LCA) Calculations for the Embodied Carbon of Buildings," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    2. Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    2. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    3. Xuejing Zheng & Boxiao Xu & Shijun You & Huan Zhang & Yaran Wang & Leizhai Sun, 2020. "Energy Consumption and CO 2 Emissions of Coach Stations in China," Energies, MDPI, vol. 13(14), pages 1-22, July.
    4. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    5. Ji, Changyoon & Hong, Taehoon & Kim, Hakpyeong, 2022. "Statistical analysis of greenhouse gas emissions of South Korean residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Augusto Mussi Alvim & Eduardo Rodrigues Sanguinet, 2021. "Climate Change Policies and the Carbon Tax Effect on Meat and Dairy Industries in Brazil," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    8. Geeth Jayathilaka & Niraj Thurairajah & Akila Rathnasinghe, 2023. "Digital Data Management Practices for Effective Embodied Carbon Estimation: A Systematic Evaluation of Barriers for Adoption in the Building Sector," Sustainability, MDPI, vol. 16(1), pages 1-23, December.
    9. Qimiao Xie & Qidi Jiang & Jarek Kurnitski & Jiahang Yang & Zihao Lin & Shiqi Ye, 2024. "Quantitative Carbon Emission Prediction Model to Limit Embodied Carbon from Major Building Materials in Multi-Story Buildings," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    10. Maryam Keyhani & Atefeh Abbaspour & Ali Bahadori-Jahromi & Anastasia Mylona & Alan Janbey & Paulina Godfrey & Hexin Zhang, 2023. "Whole Life Carbon Assessment of a Typical UK Residential Building Using Different Embodied Carbon Data Sources," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    11. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    12. Xiaogang Song & Shufan Zhai & Na Zhou, 2024. "The Carbon Emissions from Public Buildings in China: A Systematic Analysis of Evolution and Spillover Effects," Sustainability, MDPI, vol. 16(15), pages 1-22, August.
    13. Vaisi, Salah & Varmazyari, Pouya & Esfandiari, Masoud & Sharbaf, Sara A., 2023. "Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region," Applied Energy, Elsevier, vol. 336(C).
    14. Xujie Sun & Xiaocun Zhang, 2024. "Assessment and Driving Factors of Embodied Carbon Emissions in the Construction Sector: Evidence from 2005 to 2021 in Northeast China," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    15. £ukasz Ma³ys, 2023. "The approach to supply chain cooperation in the implementation of sustainable development initiatives and company’s economic performance," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 18(1), pages 255-286, March.
    16. Salvia, Monica & Simoes, Sofia G. & Herrando, María & Čavar, Marko & Cosmi, Carmelina & Pietrapertosa, Filomena & Gouveia, João Pedro & Fueyo, Norberto & Gómez, Antonio & Papadopoulou, Kiki & Taxeri, , 2021. "Improving policy making and strategic planning competencies of public authorities in the energy management of municipal public buildings: The PrioritEE toolbox and its application in five mediterranea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. María M. Serrano-Baena & Paula Triviño-Tarradas & Carlos Ruiz-Díaz & Rafael E. Hidalgo Fernández, 2020. "Implications of BREEAM Sustainability Assessment on the Design of Hotels," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    18. Fu-Wing Yu & Wai-Tung Ho, 2023. "Time Series Forecast of Cooling Demand for Sustainable Chiller System in an Office Building in a Subtropical Climate," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    19. Claudiu Vasile Kifor & Alexandru Olteanu & Mihai Zerbes, 2023. "Key Performance Indicators for Smart Energy Systems in Sustainable Universities," Energies, MDPI, vol. 16(3), pages 1-19, January.
    20. Han, Yongming & Li, Jingze & Lou, Xiaoyi & Fan, Chenyu & Geng, Zhiqiang, 2022. "Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6319-:d:1441619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.