IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6210-d1439221.html
   My bibliography  Save this article

A Sustainable Dynamic Capacity Estimation Method Based on Bike-Sharing E-Fences

Author

Listed:
  • Chen Deng

    (School of Art & Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Houqiang Ma

    (Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100021, China)

Abstract

Increasing urban traffic congestion and environmental pollution have led to the embrace of bike-sharing for its low-carbon convenience. This study enhances the operational efficiency and environmental benefits of bike-sharing systems by optimizing electronic fences (e-fences). Using bike-sharing order data from Shenzhen, China, a data-driven multi-objective optimization approach is proposed to design the sustainable dynamic capacity of e-fences. A dynamic planning model, solved with an improved Non-dominated Sorting Genetic Algorithm II (NSGA-II), adjusts e-fence capacities to match fluctuating user demand, optimizing resource utilization. The results show that an initial placement of 20 bicycles per e-fence provided a balance between cost efficiency and user convenience, with the enterprise cost being approximately 76,000 CNY and an extra walking distance for users of 15.1 m. The optimal number of e-fence sites was determined to be 40 based on the solution algorithm constructed in the study. These sites are strategically located in high-demand areas, such as residential zones, commercial districts, educational institutions, subway stations, and parks. This strategic placement enhances urban mobility and reduces disorderly parking.

Suggested Citation

  • Chen Deng & Houqiang Ma, 2024. "A Sustainable Dynamic Capacity Estimation Method Based on Bike-Sharing E-Fences," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6210-:d:1439221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Qing & Xie, Yingkun & Li, Weifeng & Zhang, Haoran & Liu, Xiaolei & Shang, Wen-Long & Chen, Jinyu & Yang, Dongyuan & Yan, Jinyue, 2022. "GPS data in urban bicycle-sharing: Dynamic electric fence planning with assessment of resource-saving and potential energy consumption increasement," Applied Energy, Elsevier, vol. 322(C).
    2. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    2. Legros, Benjamin & Fransoo, Jan C., 2023. "Admission and pricing optimization of on-street parking with delivery bays," Other publications TiSEM 6d41ee5c-27dc-4d34-aff1-4, Tilburg University, School of Economics and Management.
    3. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    4. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    5. William A. Massey & Emmanuel Ekwedike & Robert C. Hampshire & Jamol J. Pender, 2023. "A transient symmetry analysis for the M/M/1/k queue," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 1-43, February.
    6. Kuo, Pei-Fen & Shen, Chung-Wei & Chiu, Chui-Sheng, 2021. "The impact of large-scale events: A difference-in-difference model for a Pokémon go safari zone event in Tainan and its effect on bikeshare systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 283-299.
    7. Zhizhen Liu & Ziyi Wu & Feng Tang & Chao Gao & Hong Chen & Wang Xiang, 2024. "Public Bicycle Dispatch Method Based on Spatiotemporal Characteristics of Borrowing and Returning Demands," Sustainability, MDPI, vol. 16(10), pages 1-28, May.
    8. Neumann-Saavedra, Bruno Albert & Mattfeld, Dirk Christian & Hewitt, Mike, 2021. "Assessing the operational impact of tactical planning models for bike-sharing redistribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 216-235.
    9. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    10. Rayane El Sibai & Khalil Challita & Jacques Bou Abdo & Jacques Demerjian, 2021. "A New User-Based Incentive Strategy for Improving Bike Sharing Systems’ Performance," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    11. Van der Heide, G. & Roodbergen, K.J. & Van Foreest, N.D., 2021. "Cross docking for libraries with a depot," European Journal of Operational Research, Elsevier, vol. 290(2), pages 749-765.
    12. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.
    13. Hua, Mingzhuang & Chen, Xuewu & Chen, Jingxu & Huang, Di & Cheng, Long, 2022. "Large-scale dockless bike sharing repositioning considering future usage and workload balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    14. Guo, Yuhan & Li, Jinning & Xiao, Linfan & Allaoui, Hamid & Choudhary, Alok & Zhang, Lufang, 2024. "Efficient inventory routing for Bike-Sharing Systems: A combinatorial reinforcement learning framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    15. Gu, Wei & Yu, Xiaoru & Zhang, Shichen & Yan, Xiangbin & Wang, Chen, 2023. "To outsource or not: Bike-share rebalancing strategies under the service quality deviation of a third party," European Journal of Operational Research, Elsevier, vol. 310(2), pages 847-859.
    16. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    18. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    19. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    20. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6210-:d:1439221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.