IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5980-d1434228.html
   My bibliography  Save this article

Snow Depth Estimation and Spatial and Temporal Variation Analysis in Tuha Region Based on Multi-Source Data

Author

Listed:
  • Wen Yang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Baozhong He

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Xuefeng Luo

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Shilong Ma

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Xing Jiang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Yaning Song

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

  • Danying Du

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830017, China)

Abstract

In the modelling of hydrological processes on a regional scale, remote-sensing snow depth products with a high spatial and temporal resolution are essential for climate change studies and for scientific decision-making by management. The existing snow depth products have low spatial resolution and are mostly applicable to large-scale studies; however, they are insufficiently accurate for the estimation of snow depth on a regional scale, especially in shallow snow areas and mountainous regions. In this study, we coupled SSM/I, SSMIS, and AMSR2 passive microwave brightness temperature data and MODIS, TM, and Landsat 8 OLI fractional snow cover area (fSCA) data, based on Python, with 30 m spatially resolved fractional snow cover area (fSCA) data obtained by the spatio-temporal dynamic warping algorithm to invert the low-resolution passive microwave snow depths, and we developed a spatially downscaled snow depth inversion method suitable for the Turpan–Hami region. However, due to the long data-processing time and the insufficient arithmetical power of the hardware, this study had to set the spatial resolution of the result output to 250 m. As a result, a day-by-day 250 m spatial resolution snow depth dataset for 20 hydrological years (1 August 2000–31 July 2020) was generated, and the accuracy was evaluated using the measured snow depth data from the meteorological stations, with the results of r = 0.836 ( p ≤ 0.01), MAE = 1.496 cm, and RMSE = 2.597 cm, which are relatively reliable and more applicable to the Turpan–Hami area. Based on the spatially downscaled snow depth data produced, this study found that the snow in the Turpan–Hami area is mainly distributed in the northern part of Turpan (Bogda Mountain), the northwestern part of Hami (Barkun Autonomous Prefecture), and the central part of the area (North Tianshan Mountain, Barkun Mountain, and Harlik Mountain). The average annual snow depth in the Turpan–Hami area is only 0.89 cm, and the average annual snow depth increases with elevation, in line with the obvious law of vertical progression. The annual mean snow depth in the Turpan–Hami area showed a “fluctuating decreasing” trend with a rate of 0.01 cm·a −1 over the 20 hydrological years in the Turpan–Hami area. Overall, the spatially downscaled snow depth inversion algorithm developed in this study not only solves the problem of coarse spatial resolution of microwave brightness temperature data and the difficulty of obtaining accurate shallow snow depth but also solves the problem of estimating the shallow snow depth on a regional scale, which is of great significance for gaining a further understanding of the snow accumulation information in the Tuha region and for promoting the investigation and management of water resources in arid zones.

Suggested Citation

  • Wen Yang & Baozhong He & Xuefeng Luo & Shilong Ma & Xing Jiang & Yaning Song & Danying Du, 2024. "Snow Depth Estimation and Spatial and Temporal Variation Analysis in Tuha Region Based on Multi-Source Data," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5980-:d:1434228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    2. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    3. Hengzhou Xu & Chuanrong Zhang & Weidong Li & Wenjing Zhang & Hongchun Yin, 2018. "Economic growth and carbon emission in China:a spatial econometric Kuznets curve?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(1), pages 11-28.
    4. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    5. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    7. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    8. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    9. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    10. Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
    11. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    12. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    13. R. R. McCrary & L. O. Mearns & M. R. Abel & S. Biner & M. S. Bukovsky, 2022. "Projections of North American snow from NA-CORDEX and their uncertainties, with a focus on model resolution," Climatic Change, Springer, vol. 170(3), pages 1-25, February.
    14. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    15. Xiaofeng Ren & Erwen Xu & C. Ken Smith & Michael Vrahnakis & Wenmao Jing & Weijun Zhao & Rongxin Wang & Xin Jia & Chunming Yan & Ruiming Liu, 2024. "Changes in Surface Runoff and Temporal Dispersion in a Restored Montane Watershed on the Qinghai–Tibetan Plateau," Land, MDPI, vol. 13(5), pages 1-22, April.
    16. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    17. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    18. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    19. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    20. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5980-:d:1434228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.