IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5924-d1433386.html
   My bibliography  Save this article

Numerical Analysis on Heat Collecting Performance of Novel Corrugated Flat Plate Solar Collector Using Nanofluids

Author

Listed:
  • Xingwang Tang

    (School of Automotive Studies, Tongji University, Shanghai 200804, China
    Clean Energy Automotive Engineering Center, Tongji University, Shanghai 200804, China)

  • Chenchen Tan

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yan Liu

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Chuanyu Sun

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Sichuan Xu

    (School of Automotive Studies, Tongji University, Shanghai 200804, China
    Clean Energy Automotive Engineering Center, Tongji University, Shanghai 200804, China)

Abstract

To improve the heat collection performance of flat plate solar collectors, a corrugated flat plate solar collector (CFPSC) with a triangular collector tube was first innovatively designed in this paper. The effect of various nanofluids that are used as working fluid on the heat collection performance of CFPSC was comprehensively analyzed based on the heat collection characteristics test system and numerical simulation model. The results indicate that when CuO and Al 2 O 3 were used as nanoparticles, the heat collection stabilization time of the nanofluids for which ethylene glycol (EG) was used as the base fluid was 12.4~28.6% longer than that of the nanofluids for which water was used as the base fluid. Moreover, when the base fluid was EG, the temperature difference of CuO-EG nanofluid under different radiation intensities was about 5.8~19.2% higher than that of water. Furthermore, the heat collection performance of CuO nanofluids and Al 2 O 3 nanofluids was superior to TiN nanofluids. Specifically, the heat collection of CuO-EG nanofluid was 2.9~4% higher than that of TiN-EG nanofluid at different radiation intensities. Therefore, using nanofluids as a working medium and designing a flat plate solar collector with triangular collector tubes can significantly improve the collector performance.

Suggested Citation

  • Xingwang Tang & Chenchen Tan & Yan Liu & Chuanyu Sun & Sichuan Xu, 2024. "Numerical Analysis on Heat Collecting Performance of Novel Corrugated Flat Plate Solar Collector Using Nanofluids," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5924-:d:1433386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anirudh, K. & Dhinakaran, S., 2020. "Performance improvement of a flat-plate solar collector by inserting intermittent porous blocks," Renewable Energy, Elsevier, vol. 145(C), pages 428-441.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    2. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Babazadeh, Houman, 2021. "Performance of solar collector with turbulator involving nanomaterial turbulent regime," Renewable Energy, Elsevier, vol. 163(C), pages 1222-1237.
    3. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    4. Rawal Diganjit & N. Gnanasekaran & Moghtada Mobedi, 2022. "Numerical Study for Enhancement of Heat Transfer Using Discrete Metal Foam with Varying Thickness and Porosity in Solar Air Heater by LTNE Method," Energies, MDPI, vol. 15(23), pages 1-28, November.
    5. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.
    6. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    7. Xinwei Lin & Yongfang Xia & Zude Cheng & Xianshuang Liu & Yingmei Fu & Lingyun Li & Wenqin Zhou, 2024. "Thermal Performance Analysis of Porous Foam-Assisted Flat-Plate Solar Collectors with Nanofluids," Sustainability, MDPI, vol. 16(2), pages 1-26, January.
    8. Liu, Yan & Tan, Chenchen & Jin, Yingai & Ma, Shihong, 2022. "Heat collection performance analysis of corrugated flat plate collector: An experimental study," Renewable Energy, Elsevier, vol. 181(C), pages 1-9.
    9. Meng Liu & Shenghua Du & Qing Ai & Jiaming Gong & Yong Shuai, 2022. "Spectral Radiation Characteristic Measurements of Absorption and Scattering Semitransparent Materials—A Review," Energies, MDPI, vol. 15(23), pages 1-28, November.
    10. Chen, Tianyu & Shu, Gequn & Tian, Hua & Zhao, Tingting & Zhang, Hongfei & Zhang, Zhao, 2020. "Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery," Applied Energy, Elsevier, vol. 266(C).
    11. Anirudh, K. & Dhinakaran, S., 2020. "Numerical study on performance improvement of a flat-plate solar collector filled with porous foam," Renewable Energy, Elsevier, vol. 147(P1), pages 1704-1717.
    12. Anirudh, K. & Dhinakaran, S., 2021. "Numerical analysis of the performance improvement of a flat-plate solar collector using conjugated porous blocks," Renewable Energy, Elsevier, vol. 172(C), pages 382-391.
    13. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    14. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5924-:d:1433386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.