IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5788-d1430515.html
   My bibliography  Save this article

Review and Classification of Objectives in Dynamic Dial-a-Ride Systems: A Triple Bottom Line Approach of Sustainability

Author

Listed:
  • Sapan Tiwari

    (Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3053, Australia
    Centre for Urban Research, School of Global Urban and Social Studies, RMIT University, Melbourne, VIC 3004, Australia)

  • Neema Nassir

    (Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3053, Australia)

  • Patricia Sauri Lavieri

    (Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3053, Australia)

Abstract

Dynamic dial-a-ride problems (DDARPs) involve designing routes and schedules for customers with specific origins and destinations. While the optimization of DDARPs has been extensively examined, these analyses often focus solely on economic decisions. The recent literature emphasizes the inclusion of social and environmental factors in addition to economic considerations for a sustainable transportation system. This paper provides a conceptual review that identifies and classifies the most common DDARP objectives in the three dimensions of the Triple-Bottom-Line (3BL) approach of sustainability: environmental, economic, and social. This study analyzes the interconnections among different objectives and provides insights into multi-objective approaches used in transportation problems. The findings demonstrate the interconnectedness of objectives from different dimensions and highlight the involvement of various stakeholders in decision-making. The results show that optimizing one objective may have implications for other objectives, suggesting a trade-off to be considered. The results reveal that social objectives boost the economic dimension by improving service quality; however, environmental objectives negatively impact the economic dimension. Additionally, a geographical analysis was conducted, which revealed continent-wise variations in research focus and contributions. Future studies should focus more on the social and environmental dimensions to promote a sustainable transportation system.

Suggested Citation

  • Sapan Tiwari & Neema Nassir & Patricia Sauri Lavieri, 2024. "Review and Classification of Objectives in Dynamic Dial-a-Ride Systems: A Triple Bottom Line Approach of Sustainability," Sustainability, MDPI, vol. 16(13), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5788-:d:1430515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    2. Garaix, Thierry & Artigues, Christian & Feillet, Dominique & Josselin, Didier, 2010. "Vehicle routing problems with alternative paths: An application to on-demand transportation," European Journal of Operational Research, Elsevier, vol. 204(1), pages 62-75, July.
    3. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    4. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    5. Kucharski, Rafał & Cats, Oded, 2020. "Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 285-310.
    6. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    7. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.
    8. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    9. Mourgaya, M. & Vanderbeck, F., 2007. "Column generation based heuristic for tactical planning in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1028-1041, December.
    10. Thomas Hanne & Teresa Melo & Stefan Nickel, 2009. "Bringing Robustness to Patient Flow Management Through Optimized Patient Transports in Hospitals," Interfaces, INFORMS, vol. 39(3), pages 241-255, June.
    11. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2008. "The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments," European Journal of Operational Research, Elsevier, vol. 185(2), pages 534-551, March.
    12. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    13. Jagienka Rześny-Cieplińska & Agnieszka Szmelter-Jarosz, 2021. "Stakeholders’ Analysis of Environmental Sustainability in Urban Logistics: A Case Study of Tricity, Poland," Energies, MDPI, vol. 14(5), pages 1-24, February.
    14. Karabuk, Suleyman, 2009. "A nested decomposition approach for solving the paratransit vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 448-465, May.
    15. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    16. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    17. Masoud, Neda & Jayakrishnan, R., 2017. "A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 218-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    2. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    3. Tafreshian, Amirmahdi & Abdolmaleki, Mojtaba & Masoud, Neda & Wang, Huizhu, 2021. "Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 227-259.
    4. Sapan Tiwari & Neema Nassir & Patricia Sauri Lavieri, 2024. "Smart Insertion Strategies for Sustainable Operation of Shared Autonomous Vehicles," Sustainability, MDPI, vol. 16(12), pages 1-28, June.
    5. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.
    6. Zhang, Ruolin & Masoud, Neda, 2021. "A distributed algorithm for operating large-scale ridesourcing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    8. Ge, Qian & Han, Ke & Liu, Xiaobo, 2021. "Matching and routing for shared autonomous vehicles in congestible network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    9. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
    10. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    11. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
    12. Stumpe, Miriam & Dieter, Peter & Schryen, Guido & Müller, Oliver & Beverungen, Daniel, 2024. "Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    13. Aslaksen, Ingvild Eide & Svanberg, Elisabeth & Fagerholt, Kjetil & Johnsen, Lennart C. & Meisel, Frank, 2021. "A combined dial-a-ride and fixed schedule ferry service for coastal cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 306-325.
    14. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    15. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    16. Zhang, Zhenhao & Tafreshian, Amirmahdi & Masoud, Neda, 2020. "Modular transit: Using autonomy and modularity to improve performance in public transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Jodeau, Jean & Absi, Nabil & Chevrier, Rémy & Feillet, Dominique, 2024. "The rail-road Dial-a-Ride problem," European Journal of Operational Research, Elsevier, vol. 318(2), pages 486-499.
    18. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    19. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    20. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5788-:d:1430515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.