IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4675-d1405901.html
   My bibliography  Save this article

Waste Plastic in Asphalt Mixtures via the Dry Method: A Bibliometric Analysis

Author

Listed:
  • Isabella M. Bueno

    (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln (UNL), Lincoln, NE 68588, USA)

  • Jamilla E. S. L. Teixeira

    (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln (UNL), Lincoln, NE 68588, USA)

Abstract

Although waste plastic (WP) application as a paving material has drawn increasing attention from scholars, there is a lack of studies that summarize the latest development of WP research. Considering there is no standard procedure to incorporate WPs in asphalt mixtures, it is important to document the major findings from the available literature to identify knowledge gaps to tackle in future research and advance knowledge on this subject. Using a bibliometric analysis method, this study carries out a holistic review of WP articles published from 2003 to 2023, focusing on incorporating WP in asphalt mixtures via the dry method. This study particularly focused on identifying and evaluating individual types of WP mostly used in asphalt mixtures via the dry method and how their most common characteristics (size, shape, and melting point) affect the mixing procedure and the overall mixture’s performance. The analysis highlighted China, the USA, and India as leading countries in WP-related publications. Typically, low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyethylene terephthalate (PET) were the most utilized WPs in the dry method. Smaller WP particle sizes (<2.36 mm) were considered more suitable in asphalt mixtures. In general, studies employing procedures involving WP melting, typically by introducing WP to pre-heated aggregates at temperatures surpassing its melting point, resulted in improved asphalt mixtures with enhanced resistance to rutting, cracking, and moisture damage. In this context, positive performance outcomes were notably observed in studies using HDPE or LDPE, potentially because of their low melting point. The key knowledge gaps identified were the lack of a consistent procedure applicable across studies, a feasibility assessment for scaling laboratory-based procedures to field applications, and laboratory evaluations utilizing advanced performance tests as suggested in the Balance Mix Design (BMD) approaches.

Suggested Citation

  • Isabella M. Bueno & Jamilla E. S. L. Teixeira, 2024. "Waste Plastic in Asphalt Mixtures via the Dry Method: A Bibliometric Analysis," Sustainability, MDPI, vol. 16(11), pages 1-28, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4675-:d:1405901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana B. Cuevas & David E. Leiva-Candia & M. P. Dorado, 2024. "An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy," Energies, MDPI, vol. 17(12), pages 1-32, June.
    2. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    3. Kawther Saeedi & Anna Visvizi & Dimah Alahmadi & Amal Babour, 2023. "Smart Cities and Households’ Recyclable Waste Management: The Case of Jeddah," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    4. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.
    5. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).
    6. Amna Farrukh & Aymen Sajjad, 2024. "Investigating sustainability tensions and resolution strategies in the plastic food packaging industry—A paradox theory approach," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 2868-2889, May.
    7. Evangelos Danopoulos & Maureen Twiddy & Jeanette M Rotchell, 2020. "Microplastic contamination of drinking water: A systematic review," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    8. Jiang, Yuchen & Li, Xianglin & Li, Chao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2022. "Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics," Renewable Energy, Elsevier, vol. 200(C), pages 476-491.
    9. R. R. M. K. P. Ranatunga & Dilhara Wijetunge & W. V. P. H. Ranaweera & Chin-Chang Hung & Shang-Yin Vanson Liu & Qamar Schuyler & T. J. Lawson & Britta Denise Hardesty, 2023. "Ranking Sri Lanka among the World’s Top Mismanaged Waste Polluters: Does Model Data Change the Story?," Sustainability, MDPI, vol. 15(3), pages 1-12, February.
    10. Berkowicz-Płatek, Gabriela & Żukowski, Witold & Wrona, Jan & Wencel, Kinga, 2024. "Thermal decomposition of polyolefins under different oxygen content. Composition of products and thermal effects," Energy, Elsevier, vol. 295(C).
    11. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    12. Cristina Aracil & Ángel L. Villanueva Perales & Jacopo Giuntoli & Jorge Cristóbal & Pedro Haro, 2023. "The Role of Renewable-Derived Plastics in the Analysis of Waste Management Schemes: A Time-Dependent Carbon Cycle Assessment," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    13. Jan Cudzik & Klaudia Kropisz, 2024. "Assessment of Utilizing Hard-to-Recycle Plastic Waste from the Packaging Sector in Architectural Design—Case Study for Experimental Building Material," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
    14. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    15. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    16. Isabella Gambino & Francesco Bagordo & Tiziana Grassi & Alessandra Panico & Antonella De Donno, 2022. "Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    17. Trieu Nguyen, Uyen Nhat & Van Lam, Do & Shim, Hyung Cheoul & Lee, Seung-Mo, 2021. "Leaf-derived porous carbon synthesized by carbothermic reduction," Renewable Energy, Elsevier, vol. 171(C), pages 116-123.
    18. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    19. Emilia Jankowska & Miranda R. Gorman & Chad J. Frischmann, 2022. "Transforming the Plastic Production System Presents Opportunities to Tackle the Climate Crisis," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    20. Tobias Börger & Nick Hanley & Robert J. Johnston & Keila Meginnis & Tom Ndebele & Ghamz E. Ali Siyal & Frans de Vries, 2024. "Equity preferences and abatement cost sharing in international environmental agreements," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 416-441, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4675-:d:1405901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.