IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4645-d1405480.html
   My bibliography  Save this article

Quantitative Contributions of Climate and Human Activities to Streamflow and Sediment Load in the Xiliugou Basin of China

Author

Listed:
  • Wenjun Wang

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Institute of Water Resources of Pastoral Area Ministry of Water Resources, Hohhot 010020, China)

  • Zezhong Zhang

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Zipeng Wang

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Hexin Lai

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Kai Feng

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Jihong Qu

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Rong Hao

    (Ordos Development Center of Water Conservancy, Ordos 017001, China)

  • Yong Liu

    (Ordos Development Center of Water Conservancy, Ordos 017001, China)

  • Dequan Zhang

    (Ordos Development Center of Water Conservancy, Ordos 017001, China)

  • Fei Wang

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

Abstract

Investigating the influence of human activities and climate change on streamflow and sediment load is of great significance for understanding the hydrological cycle, addressing climate change, and ensuring sustainable water resource management. Based on observed data of precipitation, streamflow, and sediment load from 1990 to 2021 in the Xiliugou Basin, trend and abrupt change analyses of streamflow and sediment load were conducted using the coefficient of variation and Bayesian change point detection method. The effects of climate change and human activities on streamflow and sediment load were further examined through the double mass curve method, with a focus on the impact of land use changes on streamflow and sediment load dynamics. The results indicated that: (1) During the study period, there was a consistent decreasing trend in streamflow, sediment load, and precipitation, with respective rates of −77.76 × 10 4 m 3 /year, −55.97 × 10 4 Mt/year, and −0.84 mm/year. The distribution of annual streamflow and sediment load in the basin was uneven, with 61.05% of precipitation occurring during the wet season and the peak sediment discharge month being July, accounting for 58.90% of the total annual sediment load. (2) The variations in streamflow and sediment load in the Xiliugou Basin exhibited distinct stage characteristics, with abrupt changes occurring around 1997. Both streamflow and sediment load showed significant fluctuations from the reference period to the changing period, decreasing by 45.54% and 82.85%, respectively. (3) A positive correlation between precipitation and streamflow was observed in the Xiliugou Basin, with correlation coefficients (R) of 0.62 and 0.49, indicating a stimulating effect of precipitation on streamflow and sediment load. Human activities significantly reduced sediment load in the Xiliugou Basin from 1998 to 2021, contributing to a reduction of 115.08%. (4) An increase in cropland, water, and barren areas would lead to higher streamflow and sediment load, while an increase in grassland, forest, and impervious areas would decrease both streamflow and sediment load.

Suggested Citation

  • Wenjun Wang & Zezhong Zhang & Zipeng Wang & Hexin Lai & Kai Feng & Jihong Qu & Rong Hao & Yong Liu & Dequan Zhang & Fei Wang, 2024. "Quantitative Contributions of Climate and Human Activities to Streamflow and Sediment Load in the Xiliugou Basin of China," Sustainability, MDPI, vol. 16(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4645-:d:1405480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    2. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    3. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    4. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    5. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    6. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.
    7. Moon-Hwan Lee & Deg-Hyo Bae, 2015. "Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2407-2427, May.
    8. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    10. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    11. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    12. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    13. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    14. Asim Jahangir Khan & Manfred Koch & Adnan Ahmad Tahir, 2020. "Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB)," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    15. Xiaowen Zhuang & Yurui Fan & Yongping Li & Chuanbao Wu, 2023. "Evaluation Climate Change Impacts on Water Resources Over the Upper Reach of the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2875-2889, May.
    16. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    17. Wang, Sicong & Wang, Shifeng, 2017. "Implications of improving energy efficiency for water resources," Energy, Elsevier, vol. 140(P1), pages 922-928.
    18. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    19. Marianne Fay & Rachel I. Block & Jane Ebinger, 2010. "Adapting to Climate Change in Eastern Europe and Central Asia," World Bank Publications - Books, The World Bank Group, number 2407.
    20. Yan Ma & Arvid Bring & Zahra Kalantari & Georgia Destouni, 2019. "Potential for Hydroclimatically Driven Shifts in Infectious Disease Outbreaks: The Case of Tularemia in High-Latitude Regions," IJERPH, MDPI, vol. 16(19), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4645-:d:1405480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.