IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4567-d1403570.html
   My bibliography  Save this article

Short-Term Traffic Flow Forecasting Method Based on Secondary Decomposition and Conventional Neural Network–Transformer

Author

Listed:
  • Qichun Bing

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Panpan Zhao

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Canzheng Ren

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Xueqian Wang

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Yiming Zhao

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

Abstract

Because of the random volatility of traffic data, short-term traffic flow forecasting has always been a problem that needs to be further researched. We developed a short-term traffic flow forecasting approach by applying a secondary decomposition strategy and CNN–Transformer model. Firstly, traffic flow data are decomposed by using a Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm, and a series of intrinsic mode functions (IMFs) are obtained. Secondly, the IMF1 obtained from the CEEMDAN is further decomposed into some sub-series by using Variational Mode Decomposition (VMD) algorithm. Thirdly, the CNN–Transformer model is established for each IMF separately. The CNN model is employed to extract local spatial features, and then the Transformer model utilizes these features for global modeling and long-term relationship modeling. Finally, we obtain the final results by superimposing the forecasting results of each IMF component. The measured traffic flow dataset of urban expressways was used for experimental verification. The experimental results reveal the following: (1) The forecasting performance achieves remarkable improvement when considering secondary decomposition. Compared with the VMD-CNN–Transformer, the CEEMDAN-VMD-CNN–Transformer method declined by 25.84%, 23.15% and 22.38% in three-step-ahead forecasting in terms of MAPE. (2) It has been proven that our proposed CNN–Transformer model could achieve more outstanding forecasting performance. Compared with the CEEMDAN-VMD-CNN, the CEEMDAN-VMD-CNN–Transformer method declined by 13.58%, 11.88% and 11.10% in three-step-ahead forecasting in terms of MAPE.

Suggested Citation

  • Qichun Bing & Panpan Zhao & Canzheng Ren & Xueqian Wang & Yiming Zhao, 2024. "Short-Term Traffic Flow Forecasting Method Based on Secondary Decomposition and Conventional Neural Network–Transformer," Sustainability, MDPI, vol. 16(11), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4567-:d:1403570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
    2. LeiNa Zhao & XinYu Wen & YiMing Shao & ZhenYu Tang & Muazzam Maqsood, 2022. "Hybrid Model for Method for Short-Term Traffic Flow Prediction Based on Secondary Decomposition Technique and ELM," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, August.
    3. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    4. Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    2. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    5. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    6. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Yanling Zheng & Liping Zhang & XiXun Zhu & Gang Guo, 2020. "A comparative study of two methods to predict the incidence of hepatitis B in Guangxi, China," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-12, June.
    9. Tonglin Fu & Chen Wang, 2018. "A Hybrid Wind Speed Forecasting Method and Wind Energy Resource Analysis Based on a Swarm Intelligence Optimization Algorithm and an Artificial Intelligence Model," Sustainability, MDPI, vol. 10(11), pages 1-24, October.
    10. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    11. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    12. Liu, Xin & Cao, Zheming & Zhang, Zijun, 2021. "Short-term predictions of multiple wind turbine power outputs based on deep neural networks with transfer learning," Energy, Elsevier, vol. 217(C).
    13. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
    14. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.
    15. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    16. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    17. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2019. "Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy," Energies, MDPI, vol. 12(10), pages 1-22, May.
    18. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    19. Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
    20. Zhilong Wang & Chen Wang & Jie Wu, 2016. "Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms," Sustainability, MDPI, vol. 8(11), pages 1-32, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4567-:d:1403570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.