IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4565-d1403526.html
   My bibliography  Save this article

Spatial Heterogeneity and Driving Mechanisms of Cultivated Land Intensive Utilization in the Beibu Gulf Urban Agglomeration, China

Author

Listed:
  • Zhongqiu Zhang

    (College of Geographical Sciences, Inner Mongolia Normal University, Hohhot 010022, China
    College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
    Land Use and Remediation Engineering Technology Research Center of Inner Mongolia, Hohhot 010022, China)

  • Yufeng Zhang

    (College of Geographical Sciences, Inner Mongolia Normal University, Hohhot 010022, China
    Land Use and Remediation Engineering Technology Research Center of Inner Mongolia, Hohhot 010022, China)

  • Xiang Zhang

    (College of Geographical Sciences, Inner Mongolia Normal University, Hohhot 010022, China)

Abstract

Cultivated land intensive utilization (CLIU) exhibits spatial heterogeneity that is influenced by both natural and anthropogenic factors, with land dissected into different scale systems; however, CLIU has not yet been systematically explored. This study takes the Beibu Gulf urban agglomeration, a national-level model area for integrated land and sea development in China, as an example to investigate the spatial heterogeneity of CLIU and explore its driving factors through multiple econometrical and geographical methods, including identifying its underlying mechanisms. The results indicate that (1) the CLIU index is 0.334, its Gini coefficient is 0.183, and its comprehensive level has a low intensity and obvious spatial nonequilibrium characteristics. Hypervariable density (50.33%) and the intraprovincial gap (45.6%) are the main sources. (2) Among the independent effects of single factors, the multiple cropping index (0.57), labor force index (0.489), and intensification of construction land (0.375) exert the most influence on CLIU spatial variation. The interaction effects of two factors primarily manifested as nonlinear enhancements, with the interaction between the labor force index and multiple cropping index being particularly noteworthy (0.859). (3) The geographically weighted regression coefficients reveal that temperature (0.332), multiple cropping index (0.211), and labor force index (0.209) have relatively large and positive impacts on CLIU, while slope (−0.1), precipitation (−0.087), and population urbanization (−0.039) have relatively small and negative impacts; all factors exhibit spatial nonstationarity. The spatial heterogeneity of CLIU in the Beibu Gulf urban agglomeration is characterized by patterns’ nonequilibrium and factors’ nonstationarity. The driving mode of multiple factors on CLIU is manifested as follows: natural factors of cropland utilization provide basic guarantees, internal factors of CLIU provide positive enhancement, and external factors of land intensive utilization provide auxiliary promotion.

Suggested Citation

  • Zhongqiu Zhang & Yufeng Zhang & Xiang Zhang, 2024. "Spatial Heterogeneity and Driving Mechanisms of Cultivated Land Intensive Utilization in the Beibu Gulf Urban Agglomeration, China," Sustainability, MDPI, vol. 16(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4565-:d:1403526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Areal, Francisco J. & Jones, Philip J. & Mortimer, Simon R. & Wilson, Paul, 2018. "Measuring sustainable intensification: Combining composite indicators and efficiency analysis to account for positive externalities in cereal production," Land Use Policy, Elsevier, vol. 75(C), pages 314-326.
    2. Xie, Hualin & Huang, Yingqian & Choi, Yongrok & Shi, Jiaying, 2021. "Evaluating the sustainable intensification of cultivated land use based on emergy analysis," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    3. Lai, Zhaohao & Chen, Meiqiu & Liu, Taoju, 2020. "Changes in and prospects for cultivated land use since the reform and opening up in China," Land Use Policy, Elsevier, vol. 97(C).
    4. Xie, Hualin & Chen, Qianru & Wang, Wei & He, Yafen, 2018. "Analyzing the green efficiency of arable land use in China," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 15-28.
    5. Punzo, Gennaro & Castellano, Rosalia & Bruno, Emma, 2022. "Using geographically weighted regressions to explore spatial heterogeneity of land use influencing factors in Campania (Southern Italy)," Land Use Policy, Elsevier, vol. 112(C).
    6. Antony Trewavas, 2002. "Malthus foiled again and again," Nature, Nature, vol. 418(6898), pages 668-670, August.
    7. Ye, Sijing & Song, Changqing & Shen, Shi & Gao, Peichao & Cheng, Changxiu & Cheng, Feng & Wan, Changjun & Zhu, Dehai, 2020. "Spatial pattern of arable land-use intensity in China," Land Use Policy, Elsevier, vol. 99(C).
    8. Xie, Hualin & Jin, Shengtian, 2019. "Evolutionary Game Analysis of Fallow Farmland Behaviors of Different Types of Farmers and Local Governments," Land Use Policy, Elsevier, vol. 88(C).
    9. Dagum, Camilo, 1997. "A New Approach to the Decomposition of the Gini Income Inequality Ratio," Empirical Economics, Springer, vol. 22(4), pages 515-531.
    10. Sen, Amartya K, 1978. "On the Labour Theory of Value: Some Methodological Issues," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 2(2), pages 175-190, June.
    11. Liu, Chenyu & Song, Changqing & Ye, Sijing & Cheng, Feng & Zhang, Leina & Li, Chao, 2023. "Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years," Land Use Policy, Elsevier, vol. 131(C).
    12. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Hualin & Huang, Yingqian & Choi, Yongrok & Shi, Jiaying, 2021. "Evaluating the sustainable intensification of cultivated land use based on emergy analysis," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    2. Guanglong Dong & Zengyu Sun & Wei Li & Keqiang Wang & Chenzhao Yuan, 2024. "Identification of Potential Land Use Conflicts in Shandong Province: A New Framework," Land, MDPI, vol. 13(8), pages 1-21, August.
    3. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    4. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    5. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    6. Nan Ke & Xupeng Zhang & Xinhai Lu & Bing Kuang & Bin Jiang, 2022. "Regional Disparities and Influencing Factors of Eco-Efficiency of Arable Land Utilization in China," Land, MDPI, vol. 11(2), pages 1-17, February.
    7. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).
    8. Qianru Chen, 2022. "Analyzing Farmers’ Cultivated-Land-Abandonment Behavior: Integrating the Theory of Planned Behavior and a Structural Equation Model," Land, MDPI, vol. 11(10), pages 1-17, October.
    9. Min Zhou & Hanxiaoxue Sun & Nan Ke, 2022. "The Spatial and Temporal Evolution of Coordination Degree Concerning China’s Cultivated Land Green Utilization Efficiency and High-Quality Agricultural Development," Land, MDPI, vol. 12(1), pages 1-21, December.
    10. Xiuju Feng & Jian Gao & Jittaporn Sriboonjit & Zhongmin Wang & Jianxu Liu & Songsak Sriboonchitta, 2023. "The Impact of Urbanization on Cultivated Land Use Efficiency in the Yangtze River Economic Belt in China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    11. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    12. Fanchao Kong & Kaixiao Zhang & Hengshu Fu & Lina Cui & Yang Li & Tengteng Wang, 2023. "Temporal–Spatial Variations and Convergence Analysis of Land Use Eco-Efficiency in the Urban Agglomerations of the Yellow River Basin in China," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    13. Xiaoliang Li & Kening Wu & Rui Zhao & Yanan Liu & Xiao Li & Qijun Yang, 2021. "Spatial Analysis of Cultivated Land Productivity and Health Condition: A Case Study of Gaoping City, China," Land, MDPI, vol. 10(12), pages 1-19, November.
    14. Yuling Wu & Pei Zhang & Jia Li & Jiao Hou, 2022. "Spatial Distribution Evolution and Optimization Path of Eco-Efficiency of Cultivated Land Use: A Case Study of Hubei Province, China," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    15. Wenyu Ma & Yuchun Pan & Zaijin Sun & Changhua Liu & Xiaolan Li & Li Xu & Yunbing Gao, 2023. "Input Flux and the Risk of Heavy Metal(Loid) of Agricultural Soil in China: Based on Spatiotemporal Heterogeneity from 2000 to 2021," Land, MDPI, vol. 12(6), pages 1-22, June.
    16. Xinwei Pei & Xinger Zheng & Cong Wu, 2024. "How Part-Time Farming Affects Cultivated Land Use Sustainability: Survey-Based Assessment in China," Land, MDPI, vol. 13(8), pages 1-19, August.
    17. Dan Yang & Zhenyue Liu & Pengyan Zhang & Zhuo Chen & Yinghui Chang & Qianxu Wang & Xinyue Zhang & Rong Lu & Mengfan Li & Guangrui Xing & Guanghui Li, 2022. "Understanding Relationships between Cultivated Land Pressure and Economic Development Level across Spatiotemporal Characteristics: Implications for Supporting Land-Use Management Decisions," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    18. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Ye, Sijing & Ren, Shuyi & Song, Changqing & Du, Zhenbo & Wang, Kuangxu & Du, Bin & Cheng, Feng & Zhu, Dehai, 2024. "Spatial pattern of cultivated land fragmentation in mainland China: Characteristics, dominant factors, and countermeasures," Land Use Policy, Elsevier, vol. 139(C).
    20. Qianru Chen & Hualin Xie & Qunli Zhai, 2022. "Management Policy of Farmers’ Cultivated Land Abandonment Behavior Based on Evolutionary Game and Simulation Analysis," Land, MDPI, vol. 11(3), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4565-:d:1403526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.