IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v75y2018icp314-326.html
   My bibliography  Save this article

Measuring sustainable intensification: Combining composite indicators and efficiency analysis to account for positive externalities in cereal production

Author

Listed:
  • Areal, Francisco J.
  • Jones, Philip J.
  • Mortimer, Simon R.
  • Wilson, Paul

Abstract

We combine the use of a stochastic frontier analysis framework and composite indicators for farm provision of environmental goods to obtain a farm level composite indicator reflecting sustainable intensification. The novel sustainable intensification composite indicator that is developed accounts for multidimensional market and non-market outputs, namely the economic performance of cereal farms (i.e. market production value) and the associated positive environmental impacts of production (e.g. positive environmental externalities). The composite indicator integrates three different indicators for the provision of environmental goods into a stochastic frontier analysis: a) agri-environmental payments; b) the ratio of rough grassland and permanent pasture area to total utilised agricultural area; and c) land use diversity, as measured by the Shannon Index. We apply this approach to a panel of data for 106 cereal farms in England and Wales during the period 2010–2012. Results indicate that farm rankings on the indicator vary substantially depending on the weight given to the different environmental aspects/indicators, suggesting that single indicators of the provision of environmental goods may not provide a true reflection of the environmental performance of farms. We illustrate a simple approach that captures the aspects of sustainable intensification of farms in a much more holistic way, i.e. by producing a distribution of sustainable intensification scores for each farm reflecting different weightings of evaluation criteria. To reduce the dimensionality of this distribution farms are classified into four distinct groups according to the shape of this distribution, with some farms found to perform well under all combinations of weights for evaluation criteria, while others always perform poorly. This distribution-based analysis provides a greater depth of information than traditional approaches based on the generation of a single sustainable intensification score.

Suggested Citation

  • Areal, Francisco J. & Jones, Philip J. & Mortimer, Simon R. & Wilson, Paul, 2018. "Measuring sustainable intensification: Combining composite indicators and efficiency analysis to account for positive externalities in cereal production," Land Use Policy, Elsevier, vol. 75(C), pages 314-326.
  • Handle: RePEc:eee:lauspo:v:75:y:2018:i:c:p:314-326
    DOI: 10.1016/j.landusepol.2018.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026483771730162X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2018.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, Carmen & Koop, Gary & Steel, Mark, 2000. "A Bayesian analysis of multiple-output production frontiers," Journal of Econometrics, Elsevier, vol. 98(1), pages 47-79, September.
    2. Amani Omer & Unai Pascual & Noel P. Russell, 2007. "Biodiversity Conservation and Productivity in Intensive Agricultural Systems," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(2), pages 308-329, June.
    3. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    4. Stijn Reinhard & C. A. Knox Lovell & Geert Thijssen, 2002. "Analysis of Environmental Efficiency Variation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 1054-1065.
    5. Areal, Francisco J. & Tiffin, Richard & Balcombe, Kelvin G., 2012. "Provision of environmental output within a multi-output distance function approach," Ecological Economics, Elsevier, vol. 78(C), pages 47-54.
    6. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    7. Wilson, Paul & Hadley, David & Asby, Carol, 2001. "The influence of management characteristics on the technical efficiency of wheat farmers in eastern England," Agricultural Economics, Blackwell, vol. 24(3), pages 329-338, March.
    8. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    9. Brummer, B. & Glauben, T. & Lu, W., 2006. "Policy reform and productivity change in Chinese agriculture: A distance function approach," Journal of Development Economics, Elsevier, vol. 81(1), pages 61-79, October.
    10. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    11. David Hadley, 2006. "Patterns in Technical Efficiency and Technical Change at the Farm‐level in England and Wales, 1982–2002," Journal of Agricultural Economics, Wiley Blackwell, vol. 57(1), pages 81-100, March.
    12. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    13. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, July.
    14. Jules N. Pretty, 1997. "The sustainable intensification of agriculture," Natural Resources Forum, Blackwell Publishing, vol. 21(4), pages 247-256, November.
    15. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    16. Lansink, Alfons Oude & Reinhard, Stijn, 2004. "Investigating technical efficiency and potential technological change in Dutch pig farming," Agricultural Systems, Elsevier, vol. 79(3), pages 353-367, March.
    17. Timo Sipiläinen & Anni Huhtala, 2013. "Opportunity costs of providing crop diversity in organic and conventional farming: would targeted environmental policies make economic sense?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(3), pages 441-462, July.
    18. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    19. Ang, Frederic & Mortimer, Simon & Areal, Francisco & Tiffin, Richard, 2015. "The Impact of Dynamic Profit Maximization on Biodiversity: A Network DEA Application to UK Cereal Farms," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205857, Agricultural and Applied Economics Association.
    20. S Reinhard & G Thijssen, 2000. "Nitrogen efficiency of Dutch dairy farms: a shadow cost system approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(2), pages 167-186, June.
    21. Wilson, Paul, 2014. "Farmer characteristics associated with improved and high farm business performance," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 3(4), pages 1-9.
    22. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    23. Raymond, Christopher M. & Bryan, Brett A. & MacDonald, Darla Hatton & Cast, Andrea & Strathearn, Sarah & Grandgirard, Agnes & Kalivas, Tina, 2009. "Mapping community values for natural capital and ecosystem services," Ecological Economics, Elsevier, vol. 68(5), pages 1301-1315, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    2. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    3. Evgenia Micha & Owen Fenton & Karen Daly & Gabriella Kakonyi & Golnaz Ezzati & Thomas Moloney & Steven Thornton, 2020. "The Complex Pathway towards Farm-Level Sustainable Intensification: An Exploratory Network Analysis of Stakeholders’ Knowledge and Perception," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    4. Uehleke, Reinhard & Petrick, Martin & Hüttel, Silke, 2022. "Evaluations of agri-environmental schemes based on observational farm data: The importance of covariate selection," Land Use Policy, Elsevier, vol. 114(C).
    5. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    6. Xie, Hualin & Huang, Yingqian & Choi, Yongrok & Shi, Jiaying, 2021. "Evaluating the sustainable intensification of cultivated land use based on emergy analysis," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    7. Micha, Evgenia & Fenton, Owen & Daly, Karen & Kakonyi, Gabriella & Ezzati, Golnaz & Moloney, Thomas & Thornton, Steven F, 2019. "Mapping the pathways towards farm-level sustainable intensification of agriculture: an exploratory network 3 analysis of stakeholders’ views," SocArXiv 2rqjd, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Areal, Francisco J. & Tiffin, Richard & Balcombe, Kelvin G., 2012. "Provision of environmental output within a multi-output distance function approach," Ecological Economics, Elsevier, vol. 78(C), pages 47-54.
    2. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    3. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.
    4. Graham, Mary, 2009. "Developing a social perspective to farm performance analysis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2390-2398, June.
    5. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    6. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    7. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    8. Phatima MAMARDASHVILI & Dierk SCHMID, 2013. "Performance of Swiss dairy farms under provision of public goods," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 59(7), pages 300-314.
    9. Areal, Francisco Jose & Balcombe, Kelvin & Tiffin, Richard, 2012. "Integrated spatial dependence into Stochastic Frontier Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(4), pages 1-21, December.
    10. Soledad Moya & Jordi Perramon & Anselm Constans, 2005. "IFRS Adoption in Europe: The Case of Germany," Working Papers 0501, Departament Empresa, Universitat Autònoma de Barcelona, revised Feb 2005.
    11. Lota D. Tamini & Bruno Larue & Gale West, 2012. "Technical and environmental efficiencies and best management practices in agriculture," Applied Economics, Taylor & Francis Journals, vol. 44(13), pages 1659-1672, May.
    12. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    13. Ripoll-Zarraga, Ane Elixabete & Huderek-Glapska, Sonia, 2021. "Airports’ managerial human capital, ownership, and efficiency," Journal of Air Transport Management, Elsevier, vol. 92(C).
    14. Koop G., 2002. "Comparing the Performance of Baseball Players: A Multiple-Output Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 710-720, September.
    15. Sipilainen, Timo & Oude Lansink, Alfons G.J.M., 2005. "Learning in Organic Farming - An Application on Finnish Dairy Farms," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24493, European Association of Agricultural Economists.
    16. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    17. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    18. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    19. Fernandez, Carmen & Koop, Gary & Steel, Mark F.J., 2005. "Alternative efficiency measures for multiple-output production," Journal of Econometrics, Elsevier, vol. 126(2), pages 411-444, June.
    20. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:75:y:2018:i:c:p:314-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.