IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4422-d1400344.html
   My bibliography  Save this article

Dynamics of Heat Island Intensity in a Rapidly Urbanizing Area and the Cooling Effect of Ecological Land: A Case Study in Suzhou, Yangtze River Delta

Author

Listed:
  • Jingyi Sun

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Haidong Li

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Ruya Xiao

    (School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)

  • Guohui Yao

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Fengli Zou

    (School of Geography and Tourism, Qufu Normal University, Rizhao 276800, China)

Abstract

Ecological land could play an important function in climate regulation to mitigate urban heat islands (UHIs) and enhance the quality of the living environment. In this work, we chose Suzhou as our case study for urban agglomeration in the Yangtze River Delta (YRD), eastern China. In this city, we analyzed the dynamics of heat island intensity from 2000 to 2021 by retrieving land surface temperature (LST). Subsequently, we examined the relationship between the urban thermal environment pattern and land use change, and finally, we explored the cooling effect provided by ecological land. The results indicated that, in 2000, the city’s UHI effect primarily centered around the central urban region as a singular patch; however, since 2014, the patch UHI effect in the central urban region has been mitigated, and the original small hotspots have converged into a large, contiguous expanse spreading outward. As the shift has occurred from low- to high-temperature zones, the proportion of conversion between ecological land has been decreasing, while the opposite trend has been seen for the proportions of ecological land transferred out and for unchanged artificial surfaces. The normalized difference built-up index was found to be the main contributor to the UHI effect, followed by the normalized difference vegetation index. These findings provide novel insights into the regulation of ecosystem services during urban expansion and offer a reference for improving the function of the cooling effect through urban renewal activities and the optimization of spatial planning.

Suggested Citation

  • Jingyi Sun & Haidong Li & Ruya Xiao & Guohui Yao & Fengli Zou, 2024. "Dynamics of Heat Island Intensity in a Rapidly Urbanizing Area and the Cooling Effect of Ecological Land: A Case Study in Suzhou, Yangtze River Delta," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4422-:d:1400344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guilin Liu & Luocheng Zhang & Bin He & Xuan Jin & Qian Zhang & Bam Razafindrabe & Hailin You, 2015. "Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1415-1430, March.
    2. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    2. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.
    3. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    4. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    5. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    6. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    7. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    8. Zhang, Shaoyao & Deng, Wei & Zhang, Hao & Wang, Zhanyun, 2023. "Identification and analysis of transitional zone patterns along urban-rural-natural landscape gradients: An application to China’s southwest mountains," Land Use Policy, Elsevier, vol. 129(C).
    9. Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    10. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    11. Guangxun Shi & Peng Ye, 2021. "Assessment on Temporal and Spatial Variation Analysis of Extreme Temperature Indices: A Case Study of the Yangtze River Basin," IJERPH, MDPI, vol. 18(20), pages 1-21, October.
    12. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    13. Myroslava Lesiv & Anatoly Shvidenko & Dmitry Schepaschenko & Linda See & Steffen Fritz, 2019. "A spatial assessment of the forest carbon budget for Ukraine," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 985-1006, August.
    14. Feng Zhang & Xiasong Hu & Jing Zhang & Chengyi Li & Yupeng Zhang & Xilai Li, 2022. "Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    15. Baifei Ren & Keunhyun Park & Anil Shrestha & Jun Yang & Melissa McHale & Weilan Bai & Guangyu Wang, 2022. "Impact of Human Disturbances on the Spatial Heterogeneity of Landscape Fragmentation in Qilian Mountain National Park, China," Land, MDPI, vol. 11(11), pages 1-26, November.
    16. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    17. Zhibo Lu & Qian Song & Jianyun Zhao, 2023. "Evolution of Landscape Ecological Risk and Identification of Critical Areas in the Yellow River Source Area Based on LUCC," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    18. Xuebin Zhang & Litang Yao & Jun Luo & Wenjuan Liang, 2022. "Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries," Land, MDPI, vol. 11(6), pages 1-22, June.
    19. Lei Wang & Aifeng Lv, 2022. "Identification and Diagnosis of Transboundary River Basin Water Management in China and Neighboring Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    20. Yaoping Cui & Xinliang Xu & Jinwei Dong & Yaochen Qin, 2016. "Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases," Sustainability, MDPI, vol. 8(8), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4422-:d:1400344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.