IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4381-d1399495.html
   My bibliography  Save this article

Evaluating the Environmental Phillips Curve Hypothesis in the STIRPAT Framework for Finland

Author

Listed:
  • Jani Kinnunen

    (Department of Information Systems, Åbo Akademi University, Tuomiokirkontori 3, 20500 Turku, Finland)

  • Irina Georgescu

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania)

  • Ionuț Nica

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania)

Abstract

In the context of increasing concerns about environmental sustainability and economic growth, this study evaluates the Environmental Phillips Curve hypothesis within Finland’s STIRPAT framework from 1990 to 2022. Finland is renowned for its commitment to environmental policies and renewable energy innovations, yet it faces challenges in balancing economic growth with environmental protection. The identified problem is the need to understand the trade-offs between economic growth and environmental impact in this specific context. Using the ARDL model, we analyze the effects of GDP per capita, renewable energy consumption (RENC), urbanization (URB), and unemployment rates (UR) on greenhouse gas emissions (GHG). Our findings show that while GDP and urbanization increase GHG emissions, renewable energy significantly reduces them. The Error Correction Model highlights quick adjustments toward equilibrium, reflecting the effectiveness of Finland’s environmental policies. Short-term results confirm the limited impact of urbanization on GHG emissions, possibly due to advanced urban planning. The FMOLS, DOLS, and CCR techniques further support these findings, emphasizing the importance of renewable energy in mitigating environmental impacts. This study provides crucial insights for policymakers seeking to balance economic growth with environmental sustainability in Finland.

Suggested Citation

  • Jani Kinnunen & Irina Georgescu & Ionuț Nica, 2024. "Evaluating the Environmental Phillips Curve Hypothesis in the STIRPAT Framework for Finland," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4381-:d:1399495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Andrew Adewale Alola & Tomiwa Sunday Adebayo, 2023. "Are green resource productivity and environmental technologies the face of environmental sustainability in the Nordic region?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 760-772, April.
    3. Anindya Banerjee & Juan Dolado & Ricardo Mestre, 1998. "Error‐correction Mechanism Tests for Cointegration in a Single‐equation Framework," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 267-283, May.
    4. Pesaran, M Hashem, 1997. "The Role of Economic Theory in Modelling the Long Run," Economic Journal, Royal Economic Society, vol. 107(440), pages 178-191, January.
    5. Samargandi, Nahla & Fidrmuc, Jan & Ghosh, Sugata, 2015. "Is the Relationship Between Financial Development and Economic Growth Monotonic? Evidence from a Sample of Middle-Income Countries," World Development, Elsevier, vol. 68(C), pages 66-81.
    6. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    7. Peter Boswijk, H., 1994. "Testing for an unstable root in conditional and structural error correction models," Journal of Econometrics, Elsevier, vol. 63(1), pages 37-60, July.
    8. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    9. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    10. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    11. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    12. Shu, Haicheng & Wang, Yu & Umar, Muhammad & Zhong, Yifan, 2023. "Dynamics of renewable energy research, investment in EnvoTech and environmental quality in the context of G7 countries," Energy Economics, Elsevier, vol. 120(C).
    13. Esposito, Luca, 2023. "Renewable energy consumption and per capita income: An empirical analysis in Finland," Renewable Energy, Elsevier, vol. 209(C), pages 558-568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Samour & Omar Ikbal Tawfik & Magdalena Radulescu & Cristina Florentina Baldan, 2023. "Do Oil Price, Renewable Energy, and Financial Development Matter for Environmental Quality in Oman? Novel Insights from Augmented ARDL Approach," Energies, MDPI, vol. 16(12), pages 1-14, June.
    2. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    3. Irina Georgescu & Jani Kinnunen & Ionuț Nica, 2024. "Assessing Forest Conservation for Finland: An ARDL-Based Evaluation," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    4. Ionuț Nica & Irina Georgescu & Jani Kinnunen, 2024. "Evaluating Renewable Energy’s Role in Mitigating CO 2 Emissions: A Case Study of Solar Power in Finland Using the ARDL Approach," Energies, MDPI, vol. 17(16), pages 1-29, August.
    5. Sugra Humbatova & Afag Huseyn & Natig Gadim-Oglu Hajiyev, 2023. "Impact of Oil Factor on Investment: The Case of Azerbaijan," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 129-148, March.
    6. Mamon Adam Maarof & Dildar Haydar Ahmed & Ahmed Samour, 2023. "Fiscal Policy, Oil Price, Foreign Direct Investment, and Renewable Energy—A Path to Sustainable Development in South Africa," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    7. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2019. "Dynamics of oil price, precious metal prices and the exchange rate in the long-run," Energy Economics, Elsevier, vol. 84(C).
    8. Balsalobre-Lorente, Daniel & Bekun, Festus Victor & Etokakpan, Mfonobong Udom & Driha, Oana M., 2019. "A road to enhancements in natural gas use in Iran: A multivariate modelling approach," Resources Policy, Elsevier, vol. 64(C).
    9. Mohammed Abumunshar & Mehmet Aga & Ahmed Samour, 2020. "Oil Price, Energy Consumption, and CO 2 Emissions in Turkey. New Evidence from a Bootstrap ARDL Test," Energies, MDPI, vol. 13(21), pages 1-15, October.
    10. Ekaterini Panopoulou, 2005. "A Resolution of the Fisher Effect Puzzle: A Comparison of Estimators," The Institute for International Integration Studies Discussion Paper Series iiisdp067, IIIS.
    11. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).
    12. Faisal Faisal & Ruqiya Pervaiz & Nesrin Ozatac & Turgut Tursoy, 2021. "Exploring the relationship between carbon dioxide emissions, urbanisation and financial deepening for Turkey using the symmetric and asymmetric causality approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17374-17402, December.
    13. Irina Georgescu & Ionuț Nica, 2024. "Evaluating the Determinants of Deforestation in Romania: Empirical Evidence from an Autoregressive Distributed Lag Model and the Bayer–Hanck Cointegration Approach," Sustainability, MDPI, vol. 16(13), pages 1-28, June.
    14. Muntasir Murshed & Mohamed Elheddad & Rizwan Ahmed & Mohga Bassim & Ei Thuzar Than, 2022. "Foreign Direct Investments, Renewable Electricity Output, and Ecological Footprints: Do Financial Globalization Facilitate Renewable Energy Transition and Environmental Welfare in Bangladesh?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 33-78, March.
    15. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa," Sustainability, MDPI, vol. 14(16), pages 1-35, August.
    16. Mallick, Hrushikesh & Mahalik, Mantu Kumar & Sahoo, Manoranjan, 2018. "Is crude oil price detrimental to domestic private investment for an emerging economy? The role of public sector investment and financial sector development in an era of globalization," Energy Economics, Elsevier, vol. 69(C), pages 307-324.
    17. repec:ipg:wpaper:2014-056 is not listed on IDEAS
    18. Hasanov, Fakhri J. & Shannak, Sa'd, 2020. "Electricity incentives for agriculture in Saudi Arabia. Is that relevant to remove them?," Energy Policy, Elsevier, vol. 144(C).
    19. Dulal Chandra Pattak & Farian Tahrim & Mahdi Salehi & Liton Chandra Voumik & Salma Akter & Mohammad Ridwan & Beata Sadowska & Grzegorz Zimon, 2023. "The Driving Factors of Italy’s CO 2 Emissions Based on the STIRPAT Model: ARDL, FMOLS, DOLS, and CCR Approaches," Energies, MDPI, vol. 16(15), pages 1-21, August.
    20. Farhani, Sahbi & Shahbaz, Muhammad & Arouri, Mohamed & Teulon, Frédéric, 2014. "The role of natural gas consumption and trade in Tunisia's output," Energy Policy, Elsevier, vol. 66(C), pages 677-684.
    21. Abdhut Deheri & Stefy Carmel, 2024. "Do fluctuations in global crude oil prices have an asymmetric effect on oil product pricing in India?," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4381-:d:1399495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.