IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p349-d1310505.html
   My bibliography  Save this article

Nonlinear Influence and Interaction Effect on the Imbalance of Metro-Oriented Dockless Bike-Sharing System

Author

Listed:
  • Yancun Song

    (Institute of Intelligent Transportation Systems, Zhejiang University, Hangzhou 310058, China
    Zhejiang Provincial Engineering Research Center for Intelligent Transportation, Hangzhou 310058, China
    Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
    These authors contributed equally to this work.)

  • Kang Luo

    (Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
    These authors contributed equally to this work.)

  • Ziyi Shi

    (Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Long Zhang

    (Institute of Intelligent Transportation Systems, Zhejiang University, Hangzhou 310058, China
    Zhejiang Provincial Engineering Research Center for Intelligent Transportation, Hangzhou 310058, China
    Polytechnic Institute, Zhejiang University, Hangzhou 310015, China)

  • Yonggang Shen

    (Zhejiang Provincial Engineering Research Center for Intelligent Transportation, Hangzhou 310058, China
    Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

Dockless Bike-Sharing (DBS) is an eco-friendly, convenient, and popular form of ride-sharing. Metro-oriented DBS systems have the potential to promote sustainable transportation. However, the availability of DBS near metro stations often suffers from either scarcity or overabundance. To investigate the factors contributing to this imbalance, this paper examines the nonlinear influences and interactions that impact the DBS system near metro stations, with Shenzhen, China serving as a case study. An ensemble learning approach is employed to predict the imbalance state. Then, the machine learning interpretation method (i.e., SHapley Additive exPlanations) is used to quantify the contribution of effects, discover the strength of interactions between factors and uncover their underlying interactive connections. The results indicate the influence of external factors and the relations between pairwise variables (e.g., road density and the day of the week) for each imbalanced state. Provide two quantized sets of factors that can result in the supply-demand imbalance and support future transport planning decisions to enhance the accessibility and sustainability of Metro-oriented DBS systems.

Suggested Citation

  • Yancun Song & Kang Luo & Ziyi Shi & Long Zhang & Yonggang Shen, 2023. "Nonlinear Influence and Interaction Effect on the Imbalance of Metro-Oriented Dockless Bike-Sharing System," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:349-:d:1310505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    2. Zhitao Li & Yuzhen Shang & Guanwei Zhao & Muzhuang Yang, 2022. "Exploring the Multiscale Relationship between the Built Environment and the Metro-Oriented Dockless Bike-Sharing Usage," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    3. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    4. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yacan & Li, Jingjing & Su, Duan & Zhou, Huiyu, 2023. "Spatial-temporal heterogeneity and built environment nonlinearity in inconsiderate parking of dockless bike-sharing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    3. Singleton, Patrick A. & Park, Keunhyun & Lee, Doo Hong, 2021. "Varying influences of the built environment on daily and hourly pedestrian crossing volumes at signalized intersections estimated from traffic signal controller event data," Journal of Transport Geography, Elsevier, vol. 93(C).
    4. Yi, Wenjing & Yan, Jie, 2020. "Energy consumption and emission influences from shared mobility in China: A national level annual data analysis," Applied Energy, Elsevier, vol. 277(C).
    5. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    6. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    7. Wang, Xiaoquan & Yin, Chaoying & Zhang, Junyi & Shao, Chunfu & Wang, Shengyou, 2021. "Nonlinear effects of residential and workplace built environment on car dependence," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Yu Hao & Yingting Wang & Qiuwei Wu & Shiwei Sun & Weilu Wang & Menglin Cui, 2020. "What affects residents' participation in the circular economy for sustainable development? Evidence from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1251-1268, September.
    9. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    10. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    11. Xian Ji & Furui Shang & Chang Liu & Qinggong Kang & Rui Wang & Chenxi Dou, 2024. "Prioritizing Environmental Attributes to Enhance Residents’ Satisfaction in Post-Industrial Neighborhoods: An Application of Machine Learning-Augmented Asymmetric Impact-Performance Analysis," Sustainability, MDPI, vol. 16(10), pages 1-27, May.
    12. Lu Cheng & Zhifu Mi & D’Maris Coffman & Jing Meng & Dining Liu & Dongfeng Chang, 2022. "The Role of Bike Sharing in Promoting Transport Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 567-585, September.
    13. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    14. Tianjian Yang & Ye Li & Simin Zhou & Yu Zhang, 2019. "Dynamic Feedback Analysis of Influencing Factors and Challenges of Dockless Bike-Sharing Sustainability in China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    15. Te Ma & Mahdi Aghaabbasi & Mujahid Ali & Rosilawati Zainol & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    16. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    17. Li, Aoyong & Huang, Yizhe & Axhausen, Kay W., 2020. "An approach to imputing destination activities for inclusion in measures of bicycle accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu (Jason) & Yang, Jiawen, 2023. "Built environment interventions for emission mitigation: A machine learning analysis of travel-related CO2 in a developing city," Journal of Transport Geography, Elsevier, vol. 110(C).
    19. Zijia Wang & Lei Cheng & Yongxing Li & Zhiqiang Li, 2020. "Spatiotemporal Characteristics of Bike-Sharing Usage around Rail Transit Stations: Evidence from Beijing, China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    20. Sun, Shan & Guo, Liang & Yang, Shuo & Cao, Jason, 2024. "Exploring the contributions of Ebike ownership, transit access, and the built environment to car ownership in a developing city," Journal of Transport Geography, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:349-:d:1310505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.