IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7668-d1141106.html
   My bibliography  Save this article

A Framework to Design and Evaluate Green Contract Mechanisms for Forestry Supply Chains

Author

Listed:
  • Aydin Teymourifar

    (CEGE—Centro de Estudos em Gestão e Economia, Católica Porto Business School, 4169-005 Porto, Portugal)

  • Maria A. M. Trindade

    (SDA Bocconi School of Management, 20136 Milano, Italy)

Abstract

Green contracting mechanisms are utilized to integrate sustainable and environmentally protective goals into business objectives. This study proposes a framework for the design of green contract mechanisms in forestry supply chain management. We assumed that there was an applicant for harvesting timber in a forest, and that the owner tried to evaluate different scenarios to design a green contracting mechanism. We also assumed that the owner of a forest cared about green goals, such as carbon dioxide absorption, in the forest. We regarded the interests of the parties, such as the profit of the applicant as well as the green goals of the forest owner. We used multi-attribute decision-making techniques such as the weighted sum, normalized weighted sum, TOPSIS, and VIKOR to evaluate the various scenarios. In the literature, another approach was taken to solve a similar problem based on multi-objective techniques and the Pareto optimality concept. We compared the outcomes of the determined framework with the outputs of the previously employed methods. The recommended framework can provide more interpretable results since it considers the interests of different sides. The framework can assist businesses in designing contracts that promote sustainable operations and support compliance with the United Nations’ Sustainable Development Goals.

Suggested Citation

  • Aydin Teymourifar & Maria A. M. Trindade, 2023. "A Framework to Design and Evaluate Green Contract Mechanisms for Forestry Supply Chains," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7668-:d:1141106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parkatti, Vesa-Pekka & Assmuth, Aino & Rämö, Janne & Tahvonen, Olli, 2019. "Economics of boreal conifer species in continuous cover and rotation forestry," Forest Policy and Economics, Elsevier, vol. 100(C), pages 55-67.
    2. Chao Lu & Weilai Huang & Haifang Cheng, 2021. "Comparative Analysis of Government Subsidy Policies in a Dynamic Green Supply Chain Considering Consumers Preference," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    3. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    4. Abhijit Barman & Rubi Das & Pijus Kanti De & Shib Sankar Sana, 2021. "Optimal Pricing and Greening Strategy in a Competitive Green Supply Chain: Impact of Government Subsidy and Tax Policy," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    5. Sarkis, Joseph & Zhu, Qinghua & Lai, Kee-hung, 2011. "An organizational theoretic review of green supply chain management literature," International Journal of Production Economics, Elsevier, vol. 130(1), pages 1-15, March.
    6. Yuqiang Wu & Weiwei Guo & Zigong Cai & Yang Tong & Jingpeng Chen, 2023. "Research on Contract Coordination Mechanism of Contract Farming Considering the Green Innovation Level," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    7. Kaya, Onur & Teymourifar, Aydin & Ozturk, Gurkan, 2020. "Analysis of different public policies through simulation to increase total social utility in a healthcare system," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    8. Kilgore, Michael A. & Blinn, Charles R., 2004. "Policy tools to encourage the application of sustainable timber harvesting practices in the United States and Canada," Forest Policy and Economics, Elsevier, vol. 6(2), pages 111-127, March.
    9. Boakye, Joseph, 2018. "Understanding motivations for violation of timber harvesting regulation: The case of chainsaw operators in Ghana," Forest Policy and Economics, Elsevier, vol. 87(C), pages 85-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aydin Teymourifar & Maria A. M. Trindade, 2023. "Using DEMATEL and ISM for Designing Green Public Policies Based on the System of Systems Approach," Sustainability, MDPI, vol. 15(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Kuo-Jui & Liao, Ching-Jong & Tseng, Ming-Lang & Chiu, Anthony S.F., 2015. "Exploring decisive factors in green supply chain practices under uncertainty," International Journal of Production Economics, Elsevier, vol. 159(C), pages 147-157.
    2. Xiongyong Zhou & Zhiduan Xu, 2018. "An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information Aggregation," Sustainability, MDPI, vol. 10(7), pages 1-49, July.
    3. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    4. Panagiotis Trivellas & Georgios Malindretos & Panagiotis Reklitis, 2020. "Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    5. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    6. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    7. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    8. Mena, Carlos & Terry, Leon A. & Williams, Adrian & Ellram, Lisa, 2014. "Causes of waste across multi-tier supply networks: Cases in the UK food sector," International Journal of Production Economics, Elsevier, vol. 152(C), pages 144-158.
    9. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    10. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    11. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    12. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    13. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    14. Wang, Moran & Li, Xuerong & Wang, Shouyang, 2021. "Discovering research trends and opportunities of green finance and energy policy: A data-driven scientometric analysis," Energy Policy, Elsevier, vol. 154(C).
    15. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    16. Nasir, Mohammed Haneef Abdul & Genovese, Andrea & Acquaye, Adolf A. & Koh, S.C.L. & Yamoah, Fred, 2017. "Comparing linear and circular supply chains: A case study from the construction industry," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 443-457.
    17. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    18. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    19. Lai, Kee-hung & Wong, Christina W.Y. & Lam, Jasmine Siu Lee, 2015. "Sharing environmental management information with supply chain partners and the performance contingencies on environmental munificence," International Journal of Production Economics, Elsevier, vol. 164(C), pages 445-453.
    20. Fernando Rojas & Peter Wanke & Víctor Leiva & Mauricio Huerta & Carlos Martin-Barreiro, 2022. "Modeling Inventory Cost Savings and Supply Chain Success Factors: A Hybrid Robust Compromise Multi-Criteria Approach," Mathematics, MDPI, vol. 10(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7668-:d:1141106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.