IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7643-d1140760.html
   My bibliography  Save this article

AI-Enabled Energy Policy for a Sustainable Future

Author

Listed:
  • Mir Sayed Shah Danish

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan
    Energy Systems (Chubu Electric Power) Funded Research Division, IMaSS (Institute of Materials and Systems for Sustainability), Nagoya University, Nagoya 464-8601, Japan)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan)

Abstract

The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives.

Suggested Citation

  • Mir Sayed Shah Danish & Tomonobu Senjyu, 2023. "AI-Enabled Energy Policy for a Sustainable Future," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7643-:d:1140760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Handfield, Robert & Walton, Steven V. & Sroufe, Robert & Melnyk, Steven A., 2002. "Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process," European Journal of Operational Research, Elsevier, vol. 141(1), pages 70-87, August.
    3. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    4. Sokołowski, Maciej M. & Heffron, Raphael J., 2022. "Defining and conceptualising energy policy failure: The when, where, why, and how," Energy Policy, Elsevier, vol. 161(C).
    5. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.
    6. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mir Sayed Shah Danish, 2023. "AI and Expert Insights for Sustainable Energy Future," Energies, MDPI, vol. 16(8), pages 1-27, April.
    2. Zhao, Chuan & Guo, Qidong & Jia, Rongwen & Dong, Kangyin & Wang, Kun, 2023. "How does clean energy transition promote original design manufacturers? A three-party evolutionary game analysis," Energy Economics, Elsevier, vol. 126(C).
    3. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "A game theoretic approach for time-of-use pricing with considering renewable portfolio standard effects and investment in energy storage technologies under government interventions," Energy, Elsevier, vol. 282(C).
    4. Alptekin Ulutaş & Ayşe Topal & Dragan Pamučar & Željko Stević & Darjan Karabašević & Gabrijela Popović, 2022. "A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    5. Mao, Qian & Ma, Xinyuan & Sun, Yunpeng, 2023. "Study of impacts of blockchain technology on renewable energy resource findings," Renewable Energy, Elsevier, vol. 211(C), pages 802-808.
    6. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    7. Arimura, Toshi H. & Darnall, Nicole & Katayama, Hajime, 2011. "Is ISO 14001 a gateway to more advanced voluntary action? The case of green supply chain management," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 170-182, March.
    8. Fu Jia & Yan Jiang, 2018. "Sustainable Global Sourcing: A Systematic Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    9. Dobos, Imre & Vörösmarty, Gyöngyi, 2014. "Green supplier selection and evaluation using DEA-type composite indicators," International Journal of Production Economics, Elsevier, vol. 157(C), pages 273-278.
    10. Dobos, Imre & Vörösmarty, Gyöngyi, 2019. "Inventory-related costs in green supplier selection problems with Data Envelopment Analysis (DEA)," International Journal of Production Economics, Elsevier, vol. 209(C), pages 374-380.
    11. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    12. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    13. I Ketut Astawa & I Ketut Budarma & Cokorda Istri Sri Widhari & Anak Agung Putri Suardani, 2020. "Green Supply Chain Management and Operational Performance: A Case Study at 5-Star Hotel in Bali," Technium Social Sciences Journal, Technium Science, vol. 10(1), pages 478-487, August.
    14. Guo Li & Ming K. Lim & Zhaohua Wang, 2020. "Stakeholders, green manufacturing, and practice performance: empirical evidence from Chinese fashion businesses," Annals of Operations Research, Springer, vol. 290(1), pages 961-982, July.
    15. Andrea Chiarini, 2017. "Environmental Policies for Evaluating Suppliers' Performance Based on GRI Indicators," Business Strategy and the Environment, Wiley Blackwell, vol. 26(1), pages 98-111, January.
    16. João M. Lopes & Sofia Gomes & Rosselyn Pacheco & Elizabete Monteiro & Carolina Santos, 2022. "Drivers of Sustainable Innovation Strategies for Increased Competition among Companies," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    17. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    18. Najafi, Mehdi & Zolfagharinia, Hossein, 2024. "A Multi-objective integrated approach to address sustainability in a meat supply chain," Omega, Elsevier, vol. 124(C).
    19. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    20. Haarstad, Håvard & Sareen, Siddharth & Kandt, Jens & Coenen, Lars & Cook, Matthew, 2022. "Beyond automobility? Lock-in of past failures in low-carbon urban mobility innovations," Energy Policy, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7643-:d:1140760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.